Em compras acima de R$400,00 o frete é grátis! *Promoção valida para os estados do Sul e Sudeste, Exceto para impressoras 3D

Autor: webmaster

Saiba escolher o melhor sentido de impressão das peças 3D!

Você sabia que o sentido de impressão tem total influência em diversos parâmetros da sua peça? Resistência mecânica, qualidade superficial e muitas outras características podem sofrer variação dependendo de como você posiciona seu modelo para imprimir.

Antes da impressora 3D começar a produzir uma peça há muito trabalho de preparação. O arquivo pode ser modelado do zero ou então ser buscado em algum site na internet. Depois disso, é hora de fatiar a peça em um software de impressão, como o Simplify 3D ou Cura. Nesse momento, escolher o sentido de impressão das peças em relação à base é fundamental.

Apesar de tamanha importância, muitos usuários de impressão 3D não se atentam para a posição em que as peças serão colocadas para imprimir. Se o objeto tiver que suportar um certo esforço, essa escolha tem influência direta na resistência mecânica e, portanto, pode ditar o sucesso ou fracasso do projeto.

Então, criamos este conteúdo justamente para deixar claro a importância do sentido de impressão das peças e como fazer essa escolha. Acompanhe!

Importância do sentido de impressão das peças em relação à base

Em qualquer projeto é importante considerar a qualidade desejada para sua impressão 3D ao selecionar a orientação. Dependendo da geometria do objeto eles podem ter força, estética e velocidade ideais de construção a partir de uma única mudança de sentido de impressão das peças.

Portanto, na maioria das vezes o sentido de impressão das peças desempenha um papel crítico na determinação do resultado do seu projeto.

Então, agora vejamos como alguns parâmetros são afetados com essa escolha:

Precisão

Considere um cilindro com um orifício (10mm de diâmetro externo, 6mm de diâmetro interno, 30mm de comprimento) impresso com seu eixo central vertical. A impressora 3D construiria essa peça como uma série de círculos concêntricos sobrepostos. Isso produziria um cilindro final com uma superfície externa relativamente lisa.

Se o mesmo cilindro for reorientado horizontalmente com seu eixo central, a peça será construída como uma série de retângulos (com largura ligeiramente diferente) sobrepostos. Além disso, a superfície do cilindro que toca a mesa será plana.

Ao escolher um diferente sentido de impressão das peças pode haver uma diferença significativa na precisão do modelo. Isso pode ser observado na foto abaixo.

Precisão

Tempo de impressão

O sentido de impressão das peças também pode ter um impacto significativo no tempo de impressão.

Usando como exemplo o cilindro da seção anterior, a orientação horizontal levará significativamente menos tempo para imprimir. Isso porque o número total de camadas é significativamente reduzido. Nesse exemplo o cilindro horizontal será impresso com 100 camadas totais e o vertical com 300 camadas. Podendo resultar assim em diferenças significativas de tempo para peças grandes.

Essa diferença de tempo é explicada pela velocidade de movimentação no eixo Z ser bem inferior aos valores encontrados nos eixos X e Y.

Além disso, por causa do uso do material de suporte a velocidade de impressão da peça também pode ser afetada. Assim girar uma peça para um sentido diferente pode diminuir o uso do suporte e consequentemente o tempo de impressão.

Tempo de impressão

O sentido de impressão das peças afeta o tempo de impressão e o consumo de material (esquerda); orientação adequada pode reduzir ambos (direita).
Em geral, diferentes sentidos visam minimizar a altura total do Z e o material de suporte, para maximizar o rendimento do projeto. No entanto, recomenda-se avaliar também o sentido de impressão das peças quanto ao acabamento ou resistência. Pois as orientações otimizadas para a velocidade podem afetar negativamente tanto a resistência quanto o acabamento da superfície.

Força

Algumas impressões 3D, principalmente FDM, criam peças que possuem propriedades inerentemente anisotrópicas. Ou seja, certas propriedades físicas como dureza, resistência mecânica, refração da luz, por exemplo, dependem da direção em que são medidas. Por isso elas são muito mais fortes na direção XY do que na direção Z.

Força

Quando você está cortando seu modelo 3D para impressão, o primeiro foco é normalmente a maneira mais fácil de colocar sua peça para ser impressa. Realmente isso é muito importante e deve ser considerado. No entanto, para a maioria dos modelos é possível obter diferentes orientações para o mesmo objeto. Como tal, pode ser muito benéfico planejar a impressão de forma a maximizar sua força.

Geralmente, o eixo Z de uma impressão é considerado o mais fraco. Isso ocorre porque nesse eixo existe a possibilidade de separação entre camadas. Enquanto os eixos X e Y são compostos de muito mais filamentos contínuos. Isso significa que, se todo o resto for igual, a impressão provavelmente falhará entre as camadas no eixo Z. O grau da diferença de força entre os diferentes eixos dependerá da impressora e do material, pois alguns têm melhor aderência de camadas do que outros.

Exemplo:

Ao imprimir um objeto como este suporte de carretel abaixo, o sentido de impressão desempenhará um papel importante na resistência final do objeto.

Exemplo:

Neste exemplo a maior parte do estresse estará em um único eixo. Por isso podemos simplesmente escolher o sentido que moverá as camadas mais fracas do eixo Z para não se alinharem com a nossa direção do estresse. Abaixo você pode ver um layout melhor para a força geral do objeto (ângulo de 45º).

Exemplo

Assim essa orientação vai resultar em uma parte muito mais forte para a peça. A única desvantagem de escolher o sentido mais forte é que ele pode exigir material adicional (suporte) e consequentemente um tempo maior de impressão.

Vale lembrar que a maioria das peças que você imprime pode não precisar ter seu sentido otimizado. No entanto, essa é uma excelente maneira de ganhar um pouco mais de força. Muitas vezes o posicionamento ideal é em torno de um ângulo de 45º. Pois isso pode servir para a distribuição da fragilidade entre dois eixos em seu objeto e reduzir a chance geral de falha durante o uso.

Resistência à flexão

Para verificar os efeitos do sentido de impressão das peças FDM na resistência geral do projeto, utilizamos um teste de flexão de três pontos realizado pela Plos One. Todas as amostras testadas foram impressas em ABS. Usando assim a mesma geometria retangular em cada sentido de impressão das peças.

Os parâmetros de impressão e trajetória de extrusão afetam as camadas do ABS. Portanto, influenciam em sua resistência geral!

Embora as amostras tenham sido impressas em vários sentidos, todas foram submetidas a testes de flexão na mesma orientação. Um diagrama de sentido de impressão das peças também é mostrado para ilustrar as diferenças.

Resistência à flexão

Estruturas de suporte

O material de suporte adiciona tempo e custo extras a uma impressão 3D. Portanto, muito tempo de projeto é gasto no sentido ideal da peça para reduzir a probabilidade de falha de impressão e a quantidade de material necessário.

O uso do suporte também depende do sentido da peça. Saliências devem ser apoiadas! No exemplo abaixo, o suporte à esquerda teria uma quantidade muito grande de material. No entanto, o apoio à direita usaria uma quantidade mínima. Menos material de suporte também reduzirá seus tempos de construção.

Estruturas de suporte

A remoção de suporte é uma preocupação! No exemplo abaixo, os suportes que preenchem o furo mais longo na parte esquerda serão difíceis de remover. Isso porque eles estão dentro da peça. A mesma peça à direita não precisará de suportes no furo maior. Isso porque ele é vertical e os suportes nos orifícios mais rasos serão relativamente fáceis de remover.

Qualidade do acabamento

O sentido de impressão das peças afeta o acabamento da superfície. Isso é devido ao processo de fatiamento e a construção no eixo Z. Isso porque orientar a peça de modo que as superfícies curvadas ou inclinadas sejam construídas paralelamente ao eixo Z resultará em superfícies mais lisas.

Quando houver superfícies curvas na parte superior ou inferior da peça, aparecerão “degraus escalonados” depois de serem projetadas. Ao orientar a peça com superfícies curvas posicionadas no eixo Z (para os lados), as superfícies parecerão muito mais suaves.

Geralmente, as superfícies voltadas para cima terão o melhor acabamento superficial, mas isso varia de processo para processo:

  • Para FDM, a superfície superior é suavizada pela ponta de extrusão, a superfície em contato com a mesa de impressão geralmente será brilhante e as superfícies acima das estruturas de suporte terão um acabamento pior.
  • Para o SLA, as superfícies inferiores terão marcas de suporte e exigirão pós-processamento, enquanto as superfícies superiores serão lisas e sem marcas de suporte.
  • Peças impressas com processos de impressão 3D como SLS e Binder Jetting, terão um acabamento mais granulado em suas superfícies inferiores.
  • As peças impressas com Material Jetting terão um acabamento mate na superfície impressa em suportes. Caso contrário, terá um acabamento brilhante.

Algumas dicas

Confira agora algumas dicas extras que preparamos:

  • oriente os recursos cilíndricos verticalmente para obter um acabamento de superfície mais suave;
  • considere a direção do carregamento ao escolher o sentido quando se tratar de uma peça funcional;
  • a orientação das peças é mais importante para os processos de impressão 3D FDM e SLA / DLP.

Vale ressaltar que orientar peças em FDM tem um impacto enorme em sua resistência e aparência geral, especialmente para recursos finos e concêntricos. Recursos concêntricos ficam melhores quando as camadas são impressas paralelamente ao eixo XY. Muitos recursos finos (como guias) são mais fortes quando impressos paralelamente ao eixo XY.

Projetar uma peça para que os recursos frágeis e concêntricos fiquem na mesma direção ajudará a determinar a melhor orientação para sua impressão 3D.

Agora que você já sabe que o sentido de impressão das peças 3D pode ajudar a deixá-las mais fortes, que tal aprender outras maneiras de deixar suas impressões mais resistentes?

Conheça os tipos de impressão 3D e os seus benefícios!

Conheça os tipos de impressão 3D e os seus benefícios!

Existem diversos tipos de impressão 3D, cada um com um princípio de funcionamento, resultados diferentes, insumos e componentes distintos. Conhecer cada um dos tipos é muito interessante para estar sempre por dentro da tecnologia e saber qual o tipo ideal para cada necessidade.


Um dos desafios iniciais que os recém-chegados enfrentam com a tecnologia de impressão 3D é distinguir entre os diferentes tipos de impressão 3D e materiais disponíveis.

Qual é a diferença entre tipos de impressão 3D FDM e SLS, por exemplo? Ou SLS e DLP? Ou então EBM e DMLS?

Pode ser bem confuso. Pois com tantas siglas diferentes, você seria perdoado por confundir os tipos de impressão 3D com um gênero musical.

A primeira coisa a entender é que a impressão 3D é na verdade um termo abrangente que designa um grupo de processos de impressão 3D. Então não existe a impressão 3D, e sim existem AS impressões 3D!

O padrão ISO / ASTM 52900, criado em 2015, visa padronizar toda a terminologia e classificar cada um dos diferentes tipos de impressoras 3D.

No total, sete categorias diferentes de processos de manufatura para impressão 3D foram identificadas. Assim dentro desses sete processos foram agrupados diversas outras subcategorias que são utilizadas atualmente.

Neste artigo vamos explicar os principais tipos de impressão 3D e quais os seus pontos positivos e negativos. Sendo eles:

  • Fabricação com Filamento Fundido (FDM ou FFF);
  • Estereolitografia (SLA);
  • Processamento de Luz Direta (DLP);
  • Sinterização Seletiva a Laser (SLS);
  • Sinterização Direta a Laser de Metal (MDLS);
  • Derretimento Seletivo a Laser (SLM);
  • Fusão de feixe de elétrons (EBM);
  • Fabricação de Objetos Laminados (LOM);
  • Jato de tinta (Inkjet);
  • Polyjet.

Continue com a leitura para descobrir quais são esses tipos de impressão 3D e como cada um pode ser utilizado!

FDM ou FFF (Fused Deposition Modeling)

A extrusão de material é um processo de impressão 3D onde um filamento de material termoplástico sólido é empurrado através de um bocal aquecido, derretendo-o no processo. Então a impressora deposita o material em uma plataforma de construção ao longo de um caminho predeterminado, onde o filamento resfria e solidifica para formar um objeto sólido.

  • Tipos de impressão 3D: FDM (Fused Deposition Modeling), às vezes chamada FFF (Fused Filament Fabrication);
  • Materiais: filamento termoplástico (PLA, ABS, PETG, Flexível, HIPS – entre outros);
  • Precisão dimensional: ± 0.5% (limite inferior ± 0.5 mm);
  • Aplicações comuns: todo os tipos de peças, sendo o tamanho limitado pela área de impressão;
  • Pontos fortes: melhor acabamento superficial, cores diverdificadas e multi-materiais disponíveis;
  • Pontos fracos: tamanho de peça limitado pela área de impressão e peças menos resistentes que as usinadas.

Conhecendo a história…

O FDM é um processo de impressão 3D desenvolvido pela Scott Crump, e depois implementado pela Stratasys Ltd., nos anos 80. Assim ele utiliza materiais plásticos térmicos de qualidade de produção para imprimir objetos 3D.

FDM é um dos tipos de impressão 3D que usa termoplásticos adequados para produção, portanto, os itens impressos têm excelentes atributos mecânicos, térmicos e químicos.

Os dispositivos de extrusão de materiais são os tipos de tecnologia de impressão 3D mais comumente disponíveis e os mais baratos. Portanto eles são populares para produzir protótipos funcionais, modelos conceituais e para todos os tipos de peças. Portanto é uma tecnologia que pode criar detalhes precisos e possui uma excepcional relação resistência / peso.

Antes do início do processo de impressão do FDM, o usuário precisa dividir os dados de seu modelo 3D em várias camadas usando um software fatiador. Então os dados CAD cortados vão para a impressora para serem impressos.

Um carretel de filamento é carregado na impressora 3D e alimentado através de um bico no cabeçote de extrusão. O bico da impressora é aquecido a uma determinada temperatura. Então um motor empurra o filamento através do bico aquecido, fazendo com que derreta. A impressora move a cabeça de extrusão ao longo das coordenadas especificadas, depositando o material fundido na mesa de impressão, onde resfria e solidifica.

Quando uma camada é concluída, a impressora continua a fazer a próxima camada. Esse processo de impressão de seções é repetido, construindo camada sobre camada, até que o objeto esteja totalmente formado. Dependendo da geometria do objeto, às vezes é necessário adicionar estruturas de suporte, por exemplo, se um modelo tiver partes salientes inclinadas.

Como são as peças?

Peças FDM brutas podem mostrar linhas de camadas razoavelmente visíveis em alguns objetos. Elas obviamente precisarão de lixamento manual e acabamento após a impressão. Portanto, esta é a única maneira de obter um produto final suave com uma superfície uniforme.

Quando comparado ao SLA (tecnologia que veremos em seguida), o FDM tem uma velocidade de impressão mais lenta. O tempo total de impressão depende do tamanho e da complexidade do seu modelo. Objetos pequenos podem ser concluídos com relativa rapidez, enquanto peças maiores e mais complexas precisam de mais tempo.

A tecnologia FDM é hoje amplamente difundida e usada em indústrias como fabricantes de automóveis, produtores de alimentos e fabricantes de brinquedos. Portanto o FDM é usado para desenvolvimento de novos produtos, prototipagem e até mesmo na fabricação de produtos finais.

Através do uso deste método de impressão 3D, tornou-se possível construir objetos com geometrias e cavidades complexas. Assim podemos usar muitos tipos diferentes de termoplásticos com impressoras FDM. Os mais comuns são o ABS (acrilonitrila-butadieno-estireno) e o PLA (ácido polilático).

Os objetos acabados do FDM são funcionais e duráveis. Com a assistência do FDM, você pode imprimir não apenas protótipos operacionais, mas também produtos prontos para uso. O que há de melhor nessa tecnologia é que todos os componentes impressos com FDM podem ser de alto desempenho.

SLA e DLP

 

 

São tipos de impressão 3D em que uma resina de fotopolímero é seletivamente curado por uma fonte de luz. As duas formas mais comuns desse tipo de polimerização são SLA (Estereolitografia) e DLP (Digital Light Processing). A diferença fundamental entre esses tipos de tecnologia de impressão 3D é a fonte de luz que eles usam para curar a resina. As impressoras SLA usam um laser de pontos, em contraste com a abordagem voxel usada por uma impressora DLP.

  • Tipos de impressão 3D: Estereolitografia (SLA), Processamento de Luz Direta (DLP);
  • Materiais: resina de fotopolímero (Padrão, Transparente, Alta Temperatura);
  • Precisão dimensional: ± 0,5% (limite inferior ± 0,15 mm);
  • Aplicações comuns: protótipos de polímero tipo injeção, jóias (fundição de investimento), aplicações dentárias, aparelhos auditivos – entre outros;
  • Pontos fortes: acabamento superficial suave;
  • Pontos fracos: frágil, não é adequado para peças mecânicas.

SLA (Stereolithography)

O SLA possui a distinção histórica de ser a primeira tecnologia de impressão 3D do mundo. A estereolitografia foi inventada por Chuck Hull em 1986, que realizou a patente da tecnologia e fundou a empresa 3D Systems para comercializá-la.

O SLA é um processo de prototipagem rápida. Assim aqueles que usam essa tecnologia são certos quanto à exatidão e precisão. Ela pode produzir objetos a partir de arquivos de dados CAD 3D (gerados por computador) em pouco tempo. As máquinas que usam essa tecnologia produzem modelos, padrões, protótipos e várias peças de produção exclusivas.

Elas fazem isso convertendo fotopolímeros líquidos em objetos 3D sólidos, uma camada por vez. O fotopolímero é primeiro aquecido para transformá-lo em uma forma semi-líquida, e então endurece ao contato. A impressora constrói cada uma dessas camadas usando um laser ultravioleta, direcionado por espelhos de varredura X e Y.

Como funciona?

Logo antes de cada ciclo de impressão, uma lâmina de recobrimento se move pela superfície para garantir que cada camada fina se espalhe uniformemente pelo objeto. Então o ciclo de impressão continua desta forma, criando objetos 3D de baixo para cima.

Depois de concluído a parte 3D normalmente terá um banho químico para remover qualquer excesso de material. Também é prática comum pós-cura do objeto em um forno ultravioleta. Isso porque o item finalizado se torna mais forte e mais estável. Dependendo da peça, ela pode passar por um processo de lixamento manual e fazer uma pintura profissional.

A impressão SLA tornou-se uma opção econômica preferida para uma ampla variedade de indústrias. Alguns destes incluem automotivo, médico, aeroespacial, entretenimento e também para criar vários produtos de consumo.

A maioria das impressoras SLA usa um laser de estado sólido para curar peças. A desvantagem desses tipos de tecnologia de impressão 3D usando um laser de pontos é que pode levar mais tempo para rastrear a seção transversal de um objeto quando comparado ao DLP.

DLP (Digital Light Processing)

A DLP é um dos mais antigos tipos de impressão 3D, criado por um homem chamado Larry Hornbeck em 1987. É semelhante ao SLA, já que também trabalha com fotopolímeros e tornou-se conhecida por seu uso na produção de projetores.

Enquanto o SLA usa luz ultravioleta, o DLP usa uma fonte de luz mais tradicional, geralmente lâmpadas de arco. Este processo resulta em impressionantes velocidades de impressão. Quando há muita luz, a resina endurece rapidamente (estamos falando em segundos).

Olhando para máquinas de processamento digital de luz, esses tipos de tecnologia de impressão 3D são quase o mesmo que o SLA. A principal diferença é que o DLP usa um projetor de luz digital para gerar uma única imagem de cada camada de uma vez (ou vários flashes para partes maiores). Como o projetor é uma tela digital, a imagem de cada camada é composta de pixels quadrados, resultando em uma camada formada por pequenos blocos retangulares chamados voxels.

Em comparação com a impressão SLA, o DLP atinge tempos de impressão mais rápidos para a maioria das peças. Isso porque ele expõe camadas inteiras de uma só vez. Com a impressão SLA, um laser precisa extrair cada uma dessas camadas e isso leva tempo.

Outro ponto positivo para a tecnologia de impressão DLP é que ela é robusta e produz modelos de alta resolução todas as vezes. Também é econômico com a capacidade de usar materiais mais baratos para objetos complexos e detalhados. Isso é algo que não apenas reduz o desperdício, mas também reduz os custos de impressão.

SLS (Selective Laser Sintering)

É um dos tipos de impressão 3D em que uma fonte de energia térmica induz seletivamente a fusão entre partículas de pó dentro de uma área de construção para criar um objeto sólido.

Muitos dispositivos de Fusão em Cama de Pó também empregam um mecanismo para aplicação e alisamento de pó simultâneo a um objeto que está sendo fabricado, então o item final é envolto e suportado em pó não utilizado.

  • Tipos de impressão 3D: Sinterização Seletiva a Laser (SLS);
  • Materiais: pó termoplástico (Nylon 6, Nylon 11, Nylon 12);
  • Precisão dimensional: ± 0.3% (limite inferior ± 0.3 mm);
  • Aplicações comuns: peças funcionais; desenhos ocos; produção de peças de baixa produção;
  • Pontos fortes: partes funcionais, boas propriedades mecânicas e geometrias complexas;
  • Pontos fracos: prazos de entrega mais longos, custo mais alto que o FFF para aplicações funcionais.

Conhecendo a história…

Um empresário, inventor e professor americano chamado Dr. Carl Deckard desenvolveu e patenteou a tecnologia SLS em meados dos anos 80. É uma técnica de impressão 3D que usa lasers de CO2 de alta potência para fundir partículas.

Então, à medida que as patentes industriais expiram, esses tipos de tecnologia de impressão 3D estão se tornando cada vez mais comuns e de menor custo.

A produção consiste em utilizar um recipiente de pó de polímero aquecido a uma temperatura logo abaixo do ponto de fusão do mesmo. Em seguida, uma lâmina de recobrimento ou limpador deposita uma camada muito fina do material em pó – geralmente 0,1 mm de espessura – sobre uma plataforma de construção. Um raio laser de CO2 começa então a escanear a superfície. O laser irá seletivamente sinterizar o pó e solidificar uma seção transversal do objeto.

Assim como o SLA, o laser é focado no local correto por um par de galvos. Quando toda a seção transversal é digitalizada, a plataforma de construção se moverá para baixo. A lâmina de recobrimento deposita uma nova camada de pó no topo da última camada escaneada, e o laser irá sinterizar a próxima seção transversal do objeto sobre as seções transversais previamente solidificadas. Essas etapas são repetidas até que o objeto seja totalmente fabricado.

A plataforma de construção, ou mesa, diminui gradualmente com cada varredura a laser sucessiva. Assim o processo se repete uma camada de cada vez até atingir a altura do objeto. Há suporte não sinterizado de outros pós durante o processo de construção que envolve e protege o modelo. Isso significa que os objetos 3D não precisam de outras estruturas de suporte durante a construção.

Como são as peças?

O SLS produz peças duráveis ​​e de alta precisão e pode usar uma ampla variedade de materiais. É uma ótima tecnologia para peças e protótipos de uso final totalmente funcionais. Ele é bastante semelhante à tecnologia SLA no que diz respeito à velocidade e qualidade. A principal diferença é com os materiais, já que o SLS usa substâncias em pó, enquanto o SLA usa resinas líquidas.

Como os tipos de impressão 3D listados acima, o método começa com a criação de um arquivo CAD, que então deve ser convertido para o formato .stl com softwares específicos. O material usado para impressão pode variar de nylon, vidro e cerâmica a alguns metais como alumínio, prata ou aço.

Devido à grande variedade de materiais que podem ser usados ​​com este tipo de impressora 3D, a tecnologia é bastante popular para a impressão 3D de produtos personalizados. O SLS está mais difundido entre os fabricantes do que as pessoas que utilizam a impressão 3D como hobby, já que essa tecnologia exige o uso de lasers de alta potência, o que faz com que essas impressoras sejam caras.

DMLS, SLM e EBM

São processos de impressão 3D que produzem objetos sólidos, usando uma fonte térmica para induzir a fusão entre partículas de pó metálico uma camada de cada vez.

A maioria dessas tecnologias empregam mecanismos para adicionar pó à medida que o objeto é construído, resultando no componente final envolvido no pó de metal. No entanto, as principais variações nessas tecnologias vêm da utilização de diferentes fontes de energia: lasers ou feixes de elétrons.

  • Tipos de impressão 3D: Direct Metal Laser Sintering (DMLS), Selective Laser Melting (SLM), Electron Beam Melting (EBM);
  • Materiais: metal em pó: alumínio, aço inoxidável, titânio;
  • Precisão dimensional: ± 0,1 mm
  • Aplicações comuns: peças de metal funcionais (aeroespacial e automotivo), medicina e odontologia;
  • Pontos fortes: partes mais fortes e funcionais e geometrias complexas;
  • Pontos fracos: pequenos tamanhos de construção e maior preço entre todas as tecnologias.

DMLS (Direct Metal Laser Sintering)

A DMLS (Direct Metal Laser Sintering) e a SLM (Selective Laser Melting) produzem objetos de maneira semelhante ao SLS. No entanto, a principal diferença é que esses tipos de tecnologia de impressão 3D são aplicados à produção de peças de metal.

Para funcionar ela necessita de um laser poderoso (Yb-fibre laser) que consiga fundir as partículas dos metais para formar as camadas do objeto. Portanto sua grande vantagem é que permite criar peças finais complexas, que nos modelos tradicionais de fabricação seriam bem complicadas de produzir.

Possui um custo altíssimo tanto da impressora quanto das peças impressas, por isso é usada em poucas áreas, sendo estas principalmente a indústria aeroespacial, a medicina e a odontologia.

SLM (Selective Laser Melting)

O SLM é um dos tipos de impressão 3D que usa o laser para obter uma fusão completa do pó metálico, formando uma parte homogênea. Assim ele resulta em uma peça que tem uma temperatura de fusão única (algo que não é produzido com uma liga).

Essa é a principal diferença entre o DMLS e o SLM. O primeiro produz partes de ligas metálicas, enquanto o segundo forma materiais de elemento único, como o titânio.

Ao contrário do SLS, os processos DMLS e SLM requerem suporte estrutural, a fim de limitar a possibilidade de qualquer distorção que possa ocorrer (apesar do fato de que o pó circundante fornece suporte físico).

As peças DMLS / SLM estão em risco de deformação devido às tensões residuais produzidas durante a impressão, por causa das altas temperaturas. As peças também são normalmente tratadas termicamente após a impressão, enquanto ainda são fixadas na mesa, para aliviar qualquer tensão.

EBM (Electron Beam Melting)

EBM é outro tipo de fabricação de aditivos para peças metálicas. Foi originalmente criado pela Arcam AB Inc. no início deste século. Assim como o SLM, este método de impressão 3D é uma técnica de fusão de leito de pó. Enquanto o SLM usa o feixe de laser de alta potência como fonte de energia, o EBM usa um feixe de elétrons, que é a principal diferença entre esses dois métodos. O restante dos processos é bem parecido.

O material usado no EBM é o pó metálico que derrete e forma camada por camada por meio de um computador, que controla o feixe de elétrons em alto vácuo. Ao contrário do SLS, o EBM vai para o derretimento total do pó de metal. Assim o processo é geralmente conduzido sob alta temperatura de até 1000° C.

Comparado ao SLM, o processo do EBM é bastante lento e caro, e a disponibilidade de materiais é limitada. Portanto, o método não é tão popular, embora ainda seja usado em alguns processos de fabricação. 

Atualmente, os materiais mais bem distribuídos que são usados ​​para EBM são Titânio, Inconel 718 e Inconel 625 comercialmente puros. A aplicação de EBM é principalmente focada em implantes médicos e na área aeroespacial.

LOM (Laminated Object Manufacturing)

A fabricação de objetos laminados (Laminated Object Manufacturing, LOM) é mais um sistema de prototipagem rápida desenvolvido pela empresa Helisys Inc., sediada na Califórnia.

Durante o processo LOM, camadas de papel revestido com adesivo, plástico ou laminados de metal são fundidos usando calor e pressão e, em seguida, cortados com um laser controlado por computador ou faca. O pós-processamento das peças inclui etapas como usinagem e furação.

O processo LOM inclui várias etapas. Em primeiro lugar, o arquivo CAD é transformado em formato de computador, que geralmente é STL ou 3DS. As impressoras LOM usam folhas contínuas revestidas com um adesivo, que é colocado no substrato com um rolo aquecido. O rolo aquecido que é passado sobre a folha de material no substrato derrete seu adesivo. Então o laser ou a faca traçam as dimensões desejadas da peça. Além disso, o laser ajuda a remover facilmente as partes em excesso após a impressão ser feita.

Depois que uma camada é concluída, a plataforma é movida para baixo por cerca de um décimo de polegada. Uma nova folha do material é puxada pelo substrato e aderida a ele com um rolo aquecido. O processo é repetido várias vezes até que a peça 3D seja totalmente impressa. Quando qualquer material em excesso tiver sido cortado, a peça pode ser lixada ou selada com uma tinta. Se materiais de papel forem usados ​​durante a impressão, o objeto terá propriedades semelhantes a madeira, o que significa que ele precisa ser protegido da umidade. Então, cobri-lo com uma laca ou tinta pode ser uma boa ideia.

Provavelmente, o LOM não é o método de impressão 3D mais popular, mas um dos mais acessíveis e rápidos. Isso porque o custo de impressão é baixo devido a matérias-primas não caras. Objetos impressos com LOM podem ser relativamente grandes, o que significa que nenhuma reação química é necessária para imprimir peças grandes.

Jato de tinta (Inkjet)

Também chamada de Inkjet, esse tipo de impressora 3D derivou da impressora 2D a jato de tinta. No entanto, nesse caso, são os jatos que criam as formas do objeto. Existem duas modalidades desse tipo de impressora 3D:

  • a primeira delas utiliza um tipo de material aglutinante que é lançado pelo jato sobre um pó de resina plástica. Nos locais em que esse pó cai, ele se funde e solidifica, dando origem às formas. O processo repete-se camada por camada até que o objeto fique completamente pronto. Permite-se a utilização de diferentes tipos de materiais aglutinantes, como cerâmica e comida;
  • a segunda modalidade é aquela na qual o material liberado pelo jato é a própria tinta. Geralmente, elas possuem muitas cabeças de impressão que, atuando todas ao mesmo tempo, favorecem que um mesmo objeto seja composto por diferentes materiais.

Dos tipos de impressoras 3D, a impressora a jato de tinta é a que envolve maiores custos e também consome mais tempo. A matéria-prima é disponibilizada no formato de cartuchos, o que dá oportunidade para que os fabricantes explorem bem as possibilidades de maiores lucros.

Uma boa vantagem dessa impressora é que ela permite a impressão em cores. Apesar de não ser muito usada por causa de seu custo-benefício pouco atraente, é provável que, no futuro, ela seja muito popular para as impressões domésticas.

Polyjet

A impressão PolyJet é semelhante à impressão a jato de tinta, mas, em vez de jatear gotas de tinta sobre o papel, as impressoras 3D PolyJet jateiam camadas de um fotopolímero líquido curável sobre uma bandeja de montagem.

Suas principais vantagens são a de permitir imprimir uma mesma peça com cores e texturas diferentes e o excelente acabamento final das peças. No entanto, ela possui um alto custo de impressão.

Agora que você já sabe que não existe apenas um tipo de impressão 3D e sim tipos de impressão 3D. Sabe também o quanto essa tecnologia pode ser amplamente utilizada, não vale mais tratar essa tecnologia como algo banal. Pois, tenho certeza que de alguma forma ela pode ser incorporada no seu dia a dia.

Então, que tal aprender agora a como escolher a impressora 3D ideal para sua utilização e aproveitar tudo que ela tem a te oferecer?

5 dicas de como imprimir peças pequenas com perfeição!

5 dicas de como imprimir peças pequenas com perfeição!

Uma ótima aplicação de uma impressora 3D é para imprimir peças pequenas, miniaturas ou itens bem detalhados com volume pequeno. Essas peças têm características singulares e obter dicas para isso pode ajudar bastante. Neste artigo vamos mostrar 5 dicas incríveis para obter alta qualidade de impressão nessas peças.


Cada vez mais a impressão 3D é utilizada para peças grandes e complexas. A área útil das impressoras vem aumentando bastante, junto ao fortalecimento da estrutura para garantir qualidade e velocidade. No entanto, imprimir peças pequenas também é um desejo da comunidade de impressão 3D. Para a tecnologia FDM, criar peças menores do que 50 milímetros é um desafio, mas há maneiras para que isso se concretize.

Listamos neste conteúdo 5 dicas ótimas para que você consiga imprimir peças pequenas na sua impressora 3D. Acompanhe!

1. Coloque mais de uma peça na mesa

Nossa primeira dica para imprimir peças pequenas é colocar mais de um objeto na mesa de impressão. A explicação disso é que se for colocada somente uma peça pequena o bico quente ficará sob a região por muito tempo, isso dificulta que as camadas resfriem e o material tome a forma correta. Com o material quente por mais tempo pode-se formar bolhas e falhas no acabamento superficial.

Então, ao colocar mais de uma peça na mesma mesa de impressão você garante que as camadas terão mais tempo para resfriar.

O problema dessa solução é que você pode querer apenas uma peça e colocar mais significaria perder material. No entanto, insistir em somente uma pode fazer perder a peça ou tê-la com baixa qualidade. Pense nisso!

2. Diminua a velocidade para imprimir peças pequenas

Velocidade não é sinônimo de qualidade, principalmente na impressão 3D. Para imprimir peças pequenas você deve reduzir a velocidade, tanto na extrusão quanto na movimentação.

Com velocidades menores o bico fica mais tempo na mesma região, o que seria um problema já levantado no item anterior, mas essa “lentidão” garante que as camadas sejam depositadas perfeitamente, gerando maior qualidade da peça.

O recomendado é que se utilize velocidades de 50% para o que é usado normalmente em peças médias ou grandes.

3. Reduza a temperatura de extrusão

Observando as dicas anteriores fica fácil deduzir que abaixar a temperatura é uma boa saída para imprimir peças pequenas. Porém, tome cuidado com essa redução para não forçar demais o seu sistema extrusor. Observe a faixa de temperatura indicada pelo fabricante do filamento em cada material e faça testes de variação para calibrar a máquina corretamente.

A partir do valor de temperatura que você usa normalmente, abaixe de 2 em 2 graus para verificar o comportamento da impressão, até chegar no ponto ideal.

4. Deixe o cooler para a peça sempre ligado

Nossa quarta dica é fundamental: deixe um cooler para a peça sempre ligado! Algumas impressoras não vêm com essa peça de fábrica. Se esse for o seu caso, a instalação é muito interessante. Esse upgrade é simples, mas se precisar de ajuda, pode entrar em contato com nosso setor de manutenção e vamos lhe ajudar.

Observe, porém, se a sua peça está apresentando warping quando é resfriada. O ABS tem uma forte tendência a apresentar essa contração. Se você estiver usando uma impressora aberta e ligar o cooler, estará jogando ar frio na peça, gerando o problema. Se for usar ABS, o mais indicado é contar com uma impressora 3D fechada ou enclausurar se for aberta.

5. Utilize bicos com furo menor e largura de camada inferior

Por fim, nossa última dica para imprimir peças pequenas é optar por um bico de furo menor. O intuito é gerar camadas com menor largura, possibilitando maiores detalhes nas peças. Se você utiliza um bico de 0,4mm, por exemplo, as camadas terão largura de 0,48mm. Essa configuração é automática nos fatiadores, como o Simplify. Já se você usa um bico de 0,2mm, as camadas terão largura de 0,24mm. Esse cálculo é feito com 20% da largura do bico.

Quanto menor for o furo do bico, mais detalhes você conseguirá com a largura das camadas.

Então, vimos que imprimir peças pequenas é sim possível com impressão 3D FDM. Para isso é preciso fazer algumas alterações na configuração de impressão. Listamos as 5 principais. Se tiver qualquer dúvida, entre em contato conosco e vamos trabalhar juntos para o seu sucesso!

Impressões simultâneas ou múltiplos processos de impressão 3D: saiba escolher o melhor!

Algumas dicas avançadas na impressão 3D ajudam bastante a garantir melhores peças e melhor aproveitamento da máquina. Uma dessas dicas é trabalhar com impressões simultâneas ou múltiplos processos de impressão. Neste artigo nós vamos mostrar do que isso se trata, os motivos de utilizar e como fazer isso.

O que você faz quando precisa imprimir várias peças em sua impressora 3D? Imprime uma por uma? Fica acordado a noite toda preocupado em não perder tempo para iniciar uma nova impressão? Se você faz isso, iremos te ajudar a não precisar fazer mais em grande parte de suas impressões. Aprender a utilizar múltiplos processos de impressão 3D ou imprimir mais de uma peça ao mesmo tempo pode te ajudar a poupar muitas horas de trabalho!

Impressões simultâneas ou múltiplos processos de impressão 3D

Imagine-se imprimindo todas as peças de um jogo de xadrez durante a noite uma de cada vez. Agora imagine-se imprimindo todas essas mesmas peças e encontrando todas prontas pela manhã sem precisar ficar acordado para isso. Qual seria mais interessante?

O software Simplify3D oferece uma ampla gama de opções para impressão com múltiplos processos. Assim você pode escolher o melhor método para suas necessidades específicas. Existem 4 modos diferentes de impressão em várias partes sobre as quais falaremos.

  • Modo de impressão de processo único;
  • Múltiplos processos de impressão 3D com modo de impressão contínua;
  • Múltiplos processos de impressão 3D com modo de impressão sequencial;
  • Múltiplos processos de impressão 3D com uma única peça.

Os múltiplos processos referem-se ao número de processos FFF que você configurará para controlar a impressão de suas peças.

O software Simplify3D tem a capacidade única de permitir que você use configurações diferentes para cada modelo que você imprimir. Por exemplo, se as peças Rei e Rainha em seu jogo de xadrez exigirem configurações diferentes, você poderá configurá-las facilmente no software e ainda imprimir essas peças simultaneamente.

Modo de impressão de processo único

Essa técnica é a mais fácil de todos os quatro métodos e provavelmente a que os usuários já estão familiarizados. Uma vez que ela é utilizada quando todas as peças ou partes a serem impressas usam exatamente as mesmas configurações de fatiamento e você necessita ter a mesma confiabilidade e desempenho que uma impressão sequencial te oferece.

Como exemplo, utilizaremos quatro peças de LEGO idênticas. Os modelos são pequenos, simples e você pode organizá-los próximos uns dos outros. Portanto, nesse caso, o modo de impressão de processo único é uma ótima técnica a ser usada.

Impressões simultâneas ou múltiplos processos de impressão 3D: saiba escolher o melhor!

Peças LEGO impressas simultaneamente.

Para começar, importe o arquivo STL para o software. Para realizar a cópia do modelo basta ir em “Models” e duplicar o modelo selecionado. Nesse caso foram feitas 3 cópias. Em seguida adicione um novo processo FFF e configure suas opções de fatiamento. A última coisa que precisamos fazer é selecionar quais modelos esse processo FFF específico usará. Isso porque se quiser imprimir as quatro peças de uma vez você deve se certificar de que todas estejam selecionadas na lista ou simplesmente clique no botão para selecionar tudo.

Se você observar a pré-visualização do código G, deve notar que a extrusora imprime todas as quatro peças simultaneamente. Para cada camada, a extrusora imprime uma seção de cada bloco e repete esse processo. Isso resulta em um monte de movimento para trás e para frente entre as diferentes peças, mas, desde que elas estejam posicionadas razoavelmente próximas.

Múltiplos processos de impressão 3D com modo de impressão contínua

Múltiplos processos de impressão 3D com modo de impressão contínua

Modelo: cavalo e peão.

Ainda pensando no jogo de xadrez, para essa técnica utilizaremos como exemplo o Cavalo e o Peão. O primeiro passo é importar os arquivos STL para o software e observar os recursos dos diferentes modelos. Você notará que o peão é muito simplista com curvas e características graduais. A peça do cavalo, por outro lado, tem várias características detalhadas, como olhos, crina e dentes. Também tem uma saliência bastante severa no queixo do modelo.

Nesse caso, pode ser vantajoso usar diferentes configurações de fatiamento para esses dois modelos, para que possamos garantir que ambos imprimam com a melhor qualidade possível.

Primeiro, é preciso configurar o peão. Crie um novo processo FFF e chame-o de “Processo Peão”, por exemplo. Use o botão “Select Models” para se certificar de que este processo FFF se aplica apenas ao arquivo STL peão. Agora basta definir as configurações ideais para este modelo.

O próximo passo é alterar as configurações da peça do cavalo. Adicione um novo processo FFF e chame-o de “Processo Cavalo”, por exemplo. Como no processo anterior utilize o botão “Select Models” para se certificar que esse processo se aplica apenas ao arquivo STL do cavalo, pois as configurações dessa parte serão bem diferentes do peão. Salve suas configurações e retorne ao espaço de trabalho principal.

Múltiplos processos de impressão 3D com modo de impressão contínua

A última coisa que precisamos fazer é clicar no botão de preparar para imprimir. Assim o software detectará que você tem vários processos FFF e perguntará quais deles você deseja mesclar. Selecione o “Processo Peão” e o “Processo Cavalo”.

Na parte inferior desta janela, há também uma opção para configurar como esses vários processos serão combinados. Se selecionarmos o modo de impressão contínua, cada processo será mesclado, uma camada após a outra. O resultado será muito semelhante ao modo de impressão de processo único que descrevemos na seção anterior, no entanto, agora temos configurações otimizadas para cada modelo individual.

Múltiplos processos de impressão 3D com modo de impressão sequencial

Múltiplos processos de impressão 3D com modo de impressão sequencial

Diferença entre os modos de impressão contínua (esquerda) e sequencial (direita).

Esse modo de impressão é muito útil, pois ele pode ajudar a melhorar a confiabilidade e a qualidade de impressão. No entanto, talvez seja necessário reorganizar seus modelos para usar essa técnica.

Durante a impressão sequencial, o software imprimirá várias camadas de um único modelo antes de fazer a transição. Por isso, pode imprimir 30 camadas do nosso modelo de peão antes de passar para o cavalo e imprimir 30 camadas dele. Isso reduz significativamente a quantidade de movimento entre os modelos, o que resulta em um acabamento superficial muito mais limpo.

Ele também melhora a confiabilidade da impressão geral, já que um modelo pode falhar sem arruinar todo o lote de peças. Na imagem acima as peças ilustram a diferença entre os modos de impressão contínua (esquerda) e sequencial (direita). As linhas vermelhas finas representam movimentos rápidos em que o bico está se movendo para um novo local para começar a imprimir. Portanto como você pode ver, o modo de impressão sequencial resulta em muito menos movimentos entre as partes para impressões mais rápidas e com melhor aparência.

Múltiplos processos de impressão 3D com modo de impressão sequencial

Portanto, agora que você sabe como funciona a impressão sequencial, precisamos verificar seu hardware para determinar como reorganizar suas peças. Se o bico não tiver folga suficiente, a impressora acabará colidindo com uma das peças anteriormente impressas.

A imagem acima mostra várias configurações comuns de extrusora. Tenha em mente que pode haver acessórios externos, como ventiladores ou outras estruturas que reduzem a folga disponível de sua extrusora. As linhas laranja na imagem representam duas partes sendo impressas sequencialmente lado a lado, portanto o espaçamento entre essas partes é um fator adicional que determina se a impressão sequencial seria bem-sucedida. Por exemplo, as duas configurações inferiores não têm folga suficiente com o espaçamento de peça atual. No entanto, se o espaçamento entre as partes laranja for duplicado ou triplicado, as duas configurações inferiores obterão folga adicional.

Múltiplos processos de impressão 3D com modo de impressão sequencial

Você também pode organizar as peças de modo que uma seja posicionada na frente da outra, em vez de lado a lado. Como você pode ver, a maioria das impressoras pode usar a impressão sequencial. No entanto, pode ser necessário algum planejamento extra para garantir que os modelos sejam organizados de forma a evitar possíveis colisões.

Agora que você determinou a melhor maneira de organizar suas peças, o processo de configuração de impressão sequencial é muito fácil. Você pode seguir exatamente as mesmas etapas de “múltiplos processos, impressão contínua”, no entanto, precisamos selecionar uma opção diferente quando finalmente prepararmos nossos processos FFF. Em vez de selecionar o modo de impressão contínua quando escolhemos quais processos preparar, selecionamos a opção de impressão sequencial. Isso requer que insira um valor para a folga vertical descrita acima.

Múltiplos processos de impressão 3D com uma única peça

Simplificando, múltiplos processos de impressão 3D permitem que você altere determinadas configurações em diferentes alturas da impressão 3D. Isso porque ao ter um processo que diminui a velocidade de impressão, aumenta o preenchimento ou reduz a altura da camada principal em pontos específicos da sua impressão, você pode fazer com que certas áreas da peça tenham melhor qualidade.

Múltiplos processos de impressão 3D com modo de impressão sequencial

Modelo Flower box 2, disponível no Thingiverse.

Como você pode ver na foto, você pode dividir este modelo em 3 processos. Enquanto o Processo 1 e o Processo 3 podem permanecer iguais, o Processo 2 pode ser configurado para imprimir mais devagar para que você obtenha melhores detalhes na parte das flores.

Como definir a altura de vários processos

1) Primeiro, você deve configurar seu primeiro processo completamente. Este será o seu padrão para ajustar quaisquer processos adicionais para o seu modelo (há uma razão para isso, que será explicada na etapa 6).

2) Ao adicionar processos, o Simplify3D irá criar novos com base nas últimas configurações que você fez. Portanto, se você definir suas configurações corretamente no “Processo 1”, os subsequentes refletirão essas configurações. Tomando como base o exemplo acima é importante não editar as configurações do seu segundo processo antes de adicionar o seu terceiro processo, para não perder as configurações geradas no processo 1.

Como definir a altura de vários processos

3) Agora que todos os processos foram criados, vá para o primeiro, clique duas vezes nele e observe as configurações avançadas. Você vai precisar saber em qual altura em milímetros você quer que o primeiro processo pare e quando você quer que o segundo processo seja iniciado. Veja o exemplo:

Como definir a altura de vários processos

Depois de configurar isso, você pode clicar no botão OK para aplicar isso ao primeiro processo.

4) Faça o mesmo para o segundo processo, no entanto desta vez você precisará informar que esse processo precisa começar em 9mm e parar em qualquer altura desde a parte inferior do modelo até o topo da flor. Novamente é preciso determinar a altura de parada do processo.

Como definir a altura de vários processos

5) Faça isso para qualquer processo adicional, mas no nosso exemplo, existem apenas 3 processos. Quando você chegar ao último processo, basta desmarcar a caixa de parada de impressão. Então coloque a altura de parada do processo anterior como a altura inicial. Em nosso exemplo, como o processo 2 parou em 26mm, o processo 3 começará em 26mm e simplesmente terminará a impressão.

6) Agora, entre em seus processos e altere as várias velocidades, porcentagens de preenchimento ou altura da camada.

NOTA: A alteração de determinadas configurações pode causar conflito com outras configurações. Se você fizer uma impressão de teste e observar um comportamento estranho (pode ser alguma dessas configurações, desde temperaturas mudando aleatoriamente até a impressão incorreta da extrusora), considere anotar quais configurações você altera caso precise reverter as alterações posteriormente.

7) Quando estiver pronto, clique no botão “Prepare to Print”, selecione os 3 processos e clique em “OK”.

Como definir a altura de vários processos

Dicas finais

  •  Se você não souber quais alturas para definir os processos, poderá fazer isso temporariamente no seu processo central e gerar várias visualizações. Então basta alterar as configurações da altura para iniciar e parar, até que você obtenha as medidas corretas.
  • Como em qualquer outro processo, pode ser necessário realizar várias impressões de teste com esses processos, ajustando as configurações de cada uma para melhorar a qualidade.

Agora que você já sabe como utilizar todos os modos de impressão com várias peças ou múltiplos processos de impressão 3D, que tal descobrir também como desentupir o bico de sua impressora 3D?

3D Builder: aprenda a fazer projetos 3D de forma simples e prática!

O 3D Builder é um aplicativo gratuito que está disponível a partir do Windows 8.1. Ele reconhece os formatos de arquivos usados na impressão 3D e conecta diversos aplicativos a diversos modelos de impressoras para oferecer uma experiência de impressão totalmente integrada. Se você quer saber como utilizar esse software, este conteúdo vai lhe ajudar bastante!


Softwares e aplicativos para modelagem 3D podem parecer complexos para quem está iniciando nesse universo. Talvez por terem muitos termos ainda desconhecidos ou configurações nada intuitivas. No entanto, existem aplicativos como o 3D Builder que foram lançados justamente para mudar essa realidade!

Você já pensou em pegar imagens 2D e transformá-las em projetos 3D em poucos minutos utilizando um aplicativo totalmente gratuito? Sim, isso é possível com o 3D Builder! Além disso ele pode ser utilizado para fazer alterações em projetos já prontos, preparando suas peças para a impressão 3D.

Mesmo que você já conheça o aplicativo, eu aposto que ainda não sabe tudo o que ele tem a oferecer. Então, agora vamos aprender como transformar imagens 2D em perfeitas peças 3D e como alterar seus projetos já salvos. Confira!

O que é 3D Builder?

3D Builder é o aplicativo de modelagem 3D da Microsoft!

O programa permite ao usuário criar objetos 3D de forma prática, uma vez que inclui um catálogo de formas e objetos prontos. A interface simples e limpa permite rodar, ajustar e escalar o que se quer imprimir.

Os interessados devem ter pelo menos o Windows 8.1 instalado e uma impressora 3D compatível. O que significa que o sistema operacional oferece suporte “plug and play” para as impressoras 3D.

Você pode adicionar ainda múltiplos objetos à fila de impressão e até mesmo misturar diferentes objetos para criar novos. Os projetos em 3D criados em outras aplicações ou projetos baixados da internet também podem ser utilizados no 3D Builder.

É possível carregar objetos 3D usando três métodos diferentes. Você pode selecionar um modelo da “Biblioteca” do 3D Builder, carregar os objetos a partir de um arquivo externo ou criar um novo com uma digitalização do Sensor Kinect v2 (3D Scan).

Gratuito, o app está disponível para download na Windows Store.

Recursos disponíveis

  • abre arquivos 3MF, STL, OBJ, PLY, WRL (VRML v2.0) e glTF(v2.0);
  • limpa modelos suavizando e simplificando;
  • restaura modelos automaticamente para que você possa imprimi-los;
  • usa o aplicativo 3D Scan para digitalizar em cores;
  • tira fotos com a webcam e transforma em imagens 3D;
  • usa arquivos BMP, JPG, PNG e TGA;
  • coloca texto ou imagens em alto-relevo em qualquer modelo;
  • arrasta e solta para criar com formas simples;
  • mescla, cruza ou subtrai objetos uns dos outros;
  • corta em fatias utilizando o 3D Print;
  • adiciona uma base a objetos desnivelados;
  • imprime imagens de seus objetos 3D no papel;
  • salva como arquivos 3MF, STL, PLY ou OBJ. 

Exemplos de imagens disponíveis no aplicativo 3D Builder

 

Exemplos de imagens disponíveis no aplicativo 3D BuilderExemplos de imagens disponíveis no aplicativo 3D BuilderExemplos de imagens disponíveis no aplicativo 3D BuilderExemplos de imagens disponíveis no aplicativo 3D Builder

Como transformar imagens 2D em projetos 3D utilizando o aplicativo?

  • Utilize uma imagem PNG sem fundo (caso seja necessário retirar o fundo da imagem utilize um software de edição para retirá-lo e em seguida salve a imagem em PNG);
  • Abra o 3D Builder;
  • Clique em abrir (aparecerão várias opções de abrir imagem, objeto, câmera e digitalizar);
  • Clique em carregar imagem;
  • Assim que a imagem abrir na aba superior você tem a opção de alterar os “níveis” e “suavizar” os contornos. Você pode ir alterando esses parâmetros até encontrar a melhor configuração para sua imagem;
  • Clique em “importar imagem” para que as opções de redimensionar, alterar posição, altura da peça, rotacionar, entre outras, apareçam para você;
  • Após terminar as edições em seu projeto é possível clicar em “impressão 3D” para abrir o aplicativo 3D Print (que é um adicional de fatiamento do 3D Builder), porém nesse caso você só conseguirá imprimir utilizando uma impressora 3D compatível com o 3D Print;
  • Para não ter esse problema, talvez seja mais interessante salvar seu projeto em STL e abri-lo em seu software de fatiamento habitual. Para isso, clique em “arquivo” e “salvar como”. Escolha a opção de extensão de arquivo “STL”, renomeie seu projeto e salve.
  • Agora é só abrir seu projeto no fatiador e mandar imprimir!

Como fazer alterações em projetos no 3D Builder?

Uma outra maneira muito comum de utilização do 3D Builder é para fazer algumas pequenas alterações em um projeto que já está salvo em STL. Para isso basta abrir o seu projeto clicando em carregar objeto ao invés de carregar imagem. Após o objeto ser carregado, você conseguirá fazer furos, mesclar outras formas, pintar, duplicar…

  • No seu menu superior você vai encontrar 6 abas: inserir, objeto, editar, tinta, exibir e ajuda;

Como transformar imagens 2D em projetos 3D utilizando o aplicativo?

  • Na aba inserir, você consegue colocar outras formas em sua imagem;

Como fazer alterações em projetos no 3D Builder?

  • Na aba objeto, você vai encontrar funções como copiar e duplicar;

Como fazer alterações em projetos no 3D Builder?

 

  • Na aba editar, existem as opções de subtrair um objeto do outro, mesclar, entre outras;

Como fazer alterações em projetos no 3D Builder?

  • Na aba tinta, é possível pintar o objeto da cor que você escolher;

  • Na aba exibir, você encontra diferentes formas de mostrar sua imagem;
  • Na aba ajuda, é possível conseguir respostas para possíveis dúvidas na utilização do aplicativo;

Enfim existe uma infinidade de opções possíveis. No entanto, vale ressaltar que o 3D Builder não substitui softwares como SolidWorks ou AutoCad para modelagem de peças. Com ele é possível corrigir problemas em seu projeto, acrescentar itens, retirar partes, e muitas outras pequenas alterações. No entanto, fazer a modelagem de uma peça do zero seria um pouco mais complicado e talvez a utilização dos outros softwares citados seria mais adequada.

Em resumo o 3D Builder é um aplicativo gratuito que oferece diversas possibilidades! Para novos usuários é uma alternativa super viável. Pois, além de oferecer os recursos necessários para quem quer transformar imagens 2D em projetos de impressão 3D, ele ainda oferece ferramentas e configurações totalmente intuitivas para quem não conhece a fundo a tecnologia.

Vale lembrar que assim como no Lithophane, não são todas as imagens 2D que podem se transformar em projetos 3D. Carregar a imagem no programa e realizar testes de configuração é sempre válido!

Agora que você já sabe as possibilidades que o 3D Builder tem a oferecer, que tal começar a praticar? Para isso pode ser interessante você saber um pouco mais sobre os 20 maiores erros de impressão, para não cometê-los enquanto testa o 3D Builder!

Suporte de impressão 3D: aprenda agora como utilizar a seu favor!

Para ter uma boa qualidade nas peças impressas é muito importante saber utilizar o suporte de impressão 3D. Esse material serve para ancorar as estruturas e garantir que as camadas estejam bem resistentes e não deformem. Por isso, vamos mostrar neste conteúdo tudo o que você precisa saber para criar as melhores estruturas de suporte.


Pode ser que você já tenha ouvido falar para sempre fugir do suporte de impressão 3D, não é mesmo? Sim, eles podem ser considerados desperdício de material e podem danificar a peça durante a remoção. No entanto, dependendo do modelo a ser impresso ele se torna fundamental para um resultado final de qualidade.

Existem infinitas maneiras de evitá-los, porém, quando isso não é possível vale a pena saber a melhor maneira de utilizá-los. Por isso criamos esse conteúdo com tudo o que você precisa saber sobre as estruturas de suporte para impressão 3D antes de começar a imprimir pontes ou projeções em seus modelos. Confira!

O que são suportes?

As impressoras 3D FFF (Fused Filling Fabrication) trabalham depositando camada sobre camada de filamento para criar um objeto 3D. Nesse método, cada nova camada deve ser suportada pela camada abaixo dela. Se o seu modelo tiver uma cobertura que não seja suportada por nada abaixo, você precisará acrescentar estruturas de suporte de impressão 3D adicionais para garantir uma impressão bem-sucedida.

Suporte são considerados um mal necessário na impressão 3D. Uma vez que, eles são absolutamente necessários para modelos com projeções ou pontes. Por outro lado, eles aumentam os custos de material, adicionam mais trabalho de pós-processamento e podem danificar a superfície do modelo. Conseguir as estruturas de suporte de impressão 3D corretas é, portanto, um aspecto muito importante para os modelos que necessitam delas.

Quando utilizar estruturas de suporte para impressão 3D?

Em geral, quando seu modelo tem uma projeção ou uma ponte que não é suportada por nada abaixo, talvez seja necessário usar estruturas de suporte de impressão 3D para imprimi-las. Então aqui estão alguns exemplos de saliências e pontes ilustradas com a ajuda das letras Y, H e T.

Projeções e pontes ilustradas com o exemplo clássico das letras Y, H e T.

Nem todas as projeções precisam de suporte (Regra dos 45º)

No entanto, nem todas as projeções precisam ser suportadas. A regra geral é: se uma projeção inclinar em um ângulo menor que 45º em relação à vertical, você poderá imprimir sem usar estruturas de suporte.

Projeções em um ângulo de mais de 45 graus a partir da vertical exigem estruturas de suporte.

Acontece que as impressoras 3D usam um deslocamento horizontal muito pequeno (quase imperceptível) entre camadas consecutivas. Portanto, uma camada não é empilhada perfeitamente sobre a camada anterior. Isso permite que a impressora imprima projeções que não inclinam muito da vertical. Qualquer coisa abaixo de 45º pode ser suportada pelas camadas anteriores. Por isso 45º é considerada a linha de falha.

Considerando a impressão das letras Y e T podemos perceber claramente quando é possível não utilizar o suporte. Os dois ângulos da letra Y são inferiores a 45º em relação à vertical. Portanto, se você quiser imprimir a letra Y, pode fazer sem usar estruturas de suporte.

A letra Y não requer estruturas de suporte de impressão 3D. Já a letra T precisa. (fonte: 3DHubs)

Por outro lado, as projeções na letra T têm um ângulo de 90º com a vertical. Portanto, você deve usar estruturas de suporte para imprimir a letra T, caso contrário, o resultado será uma bagunça, conforme ilustrado abaixo.

Sem estruturas de suporte de impressão 3D, a letra T não é impressa corretamente (fonte: 3DHubs)

Nem todas as pontes requerem suporte (Regra dos 5 mm)

Assim como as projeções, nem todas as pontes requerem suporte. Aqui, a regra é: se uma ponte tiver menos de 5 mm de comprimento, a impressora poderá imprimi-la sem exigir estruturas de suporte.

Para fazer isso, a impressora usa uma técnica chamada de Bridging – onde ela estica o material quente para distâncias curtas e consegue imprimi-lo com o mínimo de flacidez. No entanto, se a ponte tiver mais de 5 mm, essa técnica não funcionará e nesse caso, você precisa adicionar estruturas de suporte.

Teste a capacidade da impressora antes de imprimir

A regra que impressões com ângulos de até 45º com a vertical não precisam de suporte, é apenas isso – uma regra prática. Esse valor pode variar! Pois, ele depende muito da sua impressora, sua condição de trabalho e o material que você está usando. Impressoras em mau estado podem não conseguir imprimir, por exemplo, projeções em um ângulo de 35º ou 40º a partir da vertical.

Portanto, antes de começar a imprimir modelos com projeções, é uma boa ideia saber a capacidade da sua impressora para imprimi-las. Isso é bem fácil de fazer! Para isso basta baixar o modelo do Massive Overhang Test do Thingiverse e imprimi-lo. Isso porque este modelo tem uma série de projeções variando de 20 a 70 graus com um incremento de 5 graus.

O teste de balanço maciço no Thingiverse

Identifique o ângulo em que a impressora começa a falhar. Pois esse é o ângulo máximo que sua impressora pode imprimir sem suporte. Anote isso para que você possa usar essas informações mais tarde para decidir onde usar o suporte e onde não.

Desvantagens do uso de suportes

Você pode estar se perguntando por que estamos discutindo onde o suporte é necessário e onde ele deve ser evitado. O motivo de toda essa confusão é porque usar estruturas de suporte de impressão 3D tem suas desvantagens. Veja quais são elas!

1. Aumento do custo do material

As estruturas de suporte requerem material adicional e são removidas e descartadas após a impressão.

Se você estiver usando impressão 3D para produção de peças para comercialização provavelmente se preocupará com o custo por modelo. Mas se você faz impressões por hobby você também se preocupa com isso.

Estruturas de suporte de impressão 3D obviamente aumentam o custo do modelo. As estruturas de suporte consomem material e este material é posteriormente removido e descartado. Assim, cada parte da estrutura de suporte que você usa, aumenta o custo do modelo.

2. Maior tempo de impressão

As estruturas de suporte também aumentam o tempo da impressão 3D, uma vez que mais partes precisam ser impressas.

3. Necessidade de pós-processamento

As estruturas de suporte de impressão 3D não fazem parte do modelo final. Elas são na verdade apenas suportes utilizados durante a impressão para imprimir pontes e projeções sem prejudicar o resultado da impressão. Isso significa que, depois que você terminar, ainda terá como tarefa adicional remover as estruturas antes que o modelo esteja pronto para uso.

Em um ambiente de impressão 3D para comercialização, o acréscimo de trabalho significa um custo adicional ao modelo.

4. Risco de danificar o modelo

Esquerda: Impressa com suporte. Meio: A remoção do suporte causou danos. Direita: Suporte removido sem muitos danos. (fonte: 3DHubs)

As estruturas de suporte de impressão 3D tocam e geralmente aderem às paredes dos modelos. Pois essa é a única maneira de fornecer suporte a projeções e pontes. Se você não for cuidadoso ao remover essas estruturas, elas poderão deixar resíduos na superfície do modelo. Portanto na pior das hipóteses, parte do modelo pode romper com a estrutura do suporte.

Considerando todas as desvantagens a regra prática é: minimizar o uso delas e adicioná-las somente quando realmente for necessário.

Geometria da estrutura do suporte

Existem dois tipos comuns de estruturas de suporte para impressão 3D:

  1. suporte em árvore;
  2. suporte linear.

Suporte em Árvore

Este tipo de suporte é uma estrutura em forma de árvore que suporta as projeções do modelo, pois ele toca a peça apenas em determinados pontos.

A vantagem de utilizar este tipo de suporte para impressão 3D é que a sua remoção é mais fácil e ele não danifica de forma significativa os pontos de contato com a peça. Mas lembre-se que ele é adequado apenas para projeções não planas como ponta do nariz, ponta do dedo ou arcos, pois ele não fornece estabilidade suficiente para projeções planas.

Suporte Linear

 

Esse é o tipo mais comum de suporte utilizado na impressão 3D. Pois ele consiste em pilares verticais que tocam a totalidade do vão entre a projeção e a mesa.

Esse tipo de suporte para impressão 3D funciona para quase todas as projeções e pontes. No entanto, eles são muito mais difíceis de remover e muito mais propensos a causar danos à superfície do modelo.

Outra solução: estruturas de suporte de impressão 3D solúveis

Se sua impressora for de dupla extrusora, existe uma opção melhor do que o tradicional suporte. Você pode carregar uma extrusora com PLA para imprimir o modelo e a outra com um material solúvel em água como o HIPS para imprimir a estrutura de apoio. Uma vez terminada a impressão, basta lavar a estrutura de suporte imergindo o modelo em água ou D-Limoneno.

Esse método de remoção reduz o risco de danos no modelo e facilita o trabalho de pós-processamento. Por isso ele é ideal para impressões mais complexas!

Como remover o suporte sem danificar o modelo

Como as estruturas de suporte de impressão 3D são difíceis de remover e podem danificar o modelo, existem alguns truques que podem te ajudar.

  1. Primeiro, identifique as estruturas de suporte de impressão 3D que estão completamente expostas e fáceis de remover com os dedos. Tente romper essas estruturas manualmente. No entanto, seja sutil durante o processo. Se você fizer isso direito, a maior parte da estrutura de suporte deve sair facilmente.
  2. Em seguida, use uma ferramenta (como por exemplo um alicate ou uma faca) para remover as estruturas que são mais difíceis de acessar. Você também pode usar uma combinação de várias ferramentas de acordo com o suporte que necessita retirar.
  3. Ao usar uma faca, é uma boa ideia aquecer a lâmina. Isso facilita o corte das estruturas de suporte, no entanto, vale ressaltar que você deve manter a atenção para não danificar o modelo impresso.
  4. Lixa também é uma ótima ferramenta para remoção. O lixamento úmido com lixas de alta gramatura (220 a 1200) removerá as estruturas de suporte e também polirá o modelo. Então para melhores resultados, aplique água na peça e lixe em movimentos suaves até que a qualidade da superfície desejada seja alcançada.

Você pode usar o lixamento úmido para remover os últimos pedaços de estruturas de suporte e polir a superfície do modelo (Fonte: Formlabs)

Como evitar ou minimizar o uso dos suportes

Chanfro

Outra maneira de eliminar a necessidade de estruturas de suportes são os chanfros. Eles são uma maneira de transformar projeções indesejadas em outras com ângulos inferiores a 45º. Por exemplo, se você tiver uma borda levemente inclinada ou curva, poderá substituí-la por uma borda angular que não requer suporte. Tal desenho angular é chamado de chanfro.

Da mesma forma, se você tiver um furo no modelo, poderá convertê-lo em um furo chanfrado na forma de uma lágrima. Na maioria das vezes, isso não afetará a estética geral do modelo, mas ajudará a reduzir as estruturas de suporte necessárias para imprimi-lo.

Reorientação da posição de impressão

Às vezes, o mais simples a se fazer é minimizar as estruturas de suporte necessárias. Isso muitas vezes é possível realizando apenas a reorientação da posição de impressão do modelo. Por exemplo, é muito melhor imprimir a caixa aberta mostrada abaixo com a face sem preenchimento voltada para cima.

O que nos resta concluir é que suportes são realmente um mal necessário na impressão 3D. Você com certeza vai precisar deles um dia seja para imprimir projeções ou pontes em seu modelo. No entanto, todas as vezes que não puder usar estruturas de suporte solúveis, é uma boa ideia tentar minimizá-los.

Quando o suporte é indispensável para impressão do seu modelo existem algumas dicas que valem ser enfatizadas:

  1. Certifique-se de que sua impressora 3D esteja em uma condição ideal.
  2. Assegure-se que o material depositado esteja resfriando o mais rápido possível. Quanto mais tempo o seu material demorar para resfriar, mais provável que a ponte ou a projeção se deformem ou falhem. Use seus mecanismos de resfriamento de camada de forma agressiva. Além disso, reduza o máximo possível as temperaturas de impressão.
  3. Reduzir a velocidade de impressão também ajuda a resfriar e especialmente na impressão de pontes mais longas e saliências complicadas.
  4. Se possível, tente usar a menor espessura da camada. Espessura da camada inferior significa menos material depositado em cada movimento de impressão. Então isso também ajuda a resfriar o material mais rapidamente.

Depois de todas essas informações, esperamos que você já esteja apto a utilizar os suportes de impressão 3D para obter sempre peças de qualidade. Agora vale a pena aprender um pouco mais sobre a resistência das suas peças impressas, não acha?

Lithophane: saiba como utilizar a tecnologia 3D para imprimir suas fotos!

Lithophane: saiba como utilizar a tecnologia 3D para imprimir suas fotos!

Já conhece o Lithophane? Com esse recurso você pode transformar fotos em 2D em peças impressas em 3D! Saiba como colocar isso em prática!


Sem tempo para ler? Então ouça este conteúdo clicando no player a seguir:

Já pensou em utilizar a impressão 3D para materializar suas fotos 2D? Yes, this is possible! O lithophane é a arte de realizar trabalhos em 3D combinados com a luz, para juntos produzirem um objeto com diferentes tonalidades quando a claridade o atravessa. Em outras palavras, consiste em partir de uma foto ou imagem 2D, criar uma peça 3D. Imprimindo de forma mais espessa as áreas mais escuras da foto e as áreas mais claras sendo impressas mais finas, de forma que a luz a atravesse com mais facilidade.

Simplificadamente, é uma impressão 3D de uma foto que usa a espessura da impressão para mostrar vários tons quando iluminada por trás.

Apesar de não ser uma tarefa muito difícil de realizar, também não é algo trivial, pois há muitas maneiras diferentes de fazer. Uma vez que você faça certo, os resultados são fenomenais! Então confira as dicas para obter sucesso desde a primeira tentativa.

 

Etapa 1: escolha uma foto apropriada para um lithophane

 

A primeira coisa que você precisa fazer é escolher uma foto que seja apropriada para impressão 3D. Nem todas as fotos ficarão bem! Portanto, você deve pensar nas seguintes opções ao escolher a foto correta:
  1. A foto impressa em 3D basicamente aparecerá em diferentes tons da mesma cor. Portanto, se houver algum detalhe importante que exija cor, a imagem pode não ser uma boa opção.
  2. É melhor escolher uma imagem com uma taxa de contraste razoavelmente alta.
  3. Uma imagem com muitos detalhes pode não ficar tão boa em lithophane. Então uma imagem simples com fundo uniforme seria a melhor opção.

Observe que esses são detalhes que devem ser lembrados e serão muito afetados pela qualidade de impressão da sua impressora e pelo tamanho do seu projeto. No entanto, se você tiver uma impressora bem calibrada, provavelmente poderá imprimir qualquer tipo de imagem. Para o exemplo usaremos uma imagem com alto grau de detalhes, o coala. Este é um bom teste para mostrar como uma imagem ruim apareceria, já que todos os tons cinza no pelo do coala causam muitos picos no STL.

Etapa 2: use o aplicativo correto

Para gerar o modelo 3D a partir da imagem, existem algumas opções disponíveis:

Softwares de código aberto:

Software pago:

Etapa 3: gere o modelo 3D

 

Para gerar o modelo 3D, foi utilizado o aplicativo Lithophanes. No entanto, você pode usar qualquer um dos outros listados. 

Na aba “Imagem” selecione a imagem que você deseja. Ela carregará e será exibida na janela principal. Então poderemos ajustar as várias configurações da imagem, como contraste e brilho. 

Há também uma opção chamada “Binarize” que pode ser útil se você quiser um lithophane puramente preto ou branco. Observe que, se você usar essa opção as demais serão ignoradas. 

O penúltimo botão é o de exibir o negativo da imagem. Finalmente, um botão de restauração para redefinir a imagem alterada para a original. 

A proporção máxima em pixels é uma configuração importante. O ideal é ter um máximo de 1 pixel para cada meia largura do bico. Isso significa que se você tiver um bico de 0,5 mm e quiser imprimir um lithophane de 100 mm de largura, precisará de menos de 400 pixels. Veja como fazer a conta:

100 / (0.5 / 2) = 100 / 0.25 = 400 pixels

Se você tiver um bico muito pequeno e/ou quiser imprimir um lithophane grande, o uso de 1000 pixels poderá causar um ligeiro aumento na qualidade. Caso contrário, 500 será mais do que suficiente. Note, entretanto, que quanto maior a resolução, mais tempo levará para fatiar o modelo.

Uma vez que você tenha uma imagem ao seu gosto, vá para a aba “3D – STL” onde você pode definir seus parâmetros de como o lithophane deve ser impresso.

Os parâmetros Z e espessura são os mais importantes aqui. Quanto maior você definir o valor de Z, mais tonalidades você poderá ter. Mas se você defini-lo muito alto, o lithophane ficará muito escuro para mostrar seu efeito completo com uma luz de fundo. Isso também aumentará o tempo de impressão consideravelmente. O parâmetro de espessura, no entanto, precisará ser o menor possível, para que não bloqueie a luz e não afete o seu lithophane.

Embora os parâmetros largura e altura sejam autoexplicativos, vale ressaltar que, para obter melhores resultados, uma impressão de 100×100 mm (ou próxima a ela, dependendo da proporção da imagem) é o ideal entre o tempo de impressão e os detalhes da impressão. Obviamente, quanto maior a impressão, mais detalhada ela será, no entanto, pode levar muito tempo para ser impressa. Você pode imprimir lithophanes menores de 50×50 mm, por exemplo, ou inferiores para impressões com detalhes baixos. 

No exemplo do coala, vale ressaltar que mesmo utilizando todos os parâmetros de forma correta, a impressão dessa imagem em lithophane ainda não seria de alta qualidade. Isso porque o grau de detalhamento, principalmente nos pelos não deixariam que houvesse contraste suficiente para o efeito da luz na peça.

Agora basta clicar no botão Gerar 3D para ver como cada parâmetro afeta seu modelo, e pode fazer isso até que esteja satisfeito. Em seguida, clique no botão de salvar STL. Certifique-se de esperar até que a barra de status diga “File Save” antes de carregar o STL no seu programa de fatiamento.

Etapa 4: fatie o seu modelo

Agora você tem um bom modelo 3D, mas ainda precisa ser capaz de imprimi-lo! Aqui estão algumas dicas muito importantes que você deve ter em mente ao fatiar seu modelo:

1. Defina o preenchimento para 100% retilíneo em ângulo de 30°

Primeiro de tudo, você tem que definir o preenchimento para 100%. Isso porque ele ajudará a evitar que o material caia no preenchimento de pequenas seções que podem atrapalhar completamente a impressão. Outra sugestão é usar um preenchimento retilíneo de 30° ou 35°.

2. Use a altura de camada mais baixa possível

Quanto menor a altura da camada que você usa, melhor será a sua resolução de impressão. Isso porque ela também permitirá que você determine quantos tons sua impressão terá.

3. Imprima o mais lentamente possível

A maior parte da impressão será muito detalhada, com muito pouca extrusão, e causará uma enorme quantidade de retrações. Assim para evitar bolhas em todo o lugar, ou obstruir sua extrusora devido a um excesso de retrações rápidas, é melhor diminuir a velocidade de impressão o máximo que puder. Quanto mais lento for, mais refinada será a qualidade da impressão.

4. Não dimensione o modelo no programa de fatiamento

Se você quiser dimensionar o modelo, basta voltar ao passo anterior e alterar o valor no aplicativo Lithophanes em vez de dimensionar o modelo no seu programa de fatiamento. Assim você não perderá nenhuma resolução na sua impressão.

Passo 5: imprima e divirta-se!

 

Agora que você dividiu seu modelo, você pode imprimi-lo. Se a sua impressora tiver um leitor de cartões SD, use-o no lugar da conexão USB. Isso porque a impressão pode ter muitos detalhes sobre algumas camadas e a conexão USB pode não ser rápida o suficiente para enviar todo o G-code para a impressora. Assim ele começa a fazer pausas enquanto estiver recebendo o G-code via USB. Pequenas pausas deixarão gotas de filamento na impressão que afetarão a qualidade do resultado geral.

Observe se sua mesa está bem preparada para evitar deformações. Certifique-se também que sua impressora esteja bem calibrada. A temperatura de impressão também deve ser definida corretamente para minimizar possíveis falhas.

Outro detalhe importante é usar um bom filamento branco ou natural. Você também pode experimentar algumas cores claras, como amarelo. No entanto quando a imagem estiver em preto e branco, é melhor usar a cor branca para impressão.

A melhor maneira para imprimir um lithophane é na vertical! Porém, como a peça é muito fina, o ideal é utilizar o raft como apoio. Assim seu modelo terá menos chance de descolar da mesa e arruinar seu trabalho.

Após o término da impressão, basta colocar sua peça contra a luz para finalmente ver a imagem em toda a sua glória. A diferença entre um lithophane aceso e apagado é enorme. Geralmente, ele fica muito melhor com a luz do dia do que com uma lanterna. Mas, desde que a luz seja difusa e não seja muito brilhante, ele ficará perfeito!

As dimensões e a espessura afetam muito o tempo de impressão. A quantidade de detalhes na foto também afetará a impressão, como vimos na foto do coala.

Ainda tem dúvidas? Então confira esse vídeo!

Se você ainda acha que não será capaz de criar um bom lithophane, confira este vídeo abaixo do nosso parceiro, o Murilo do canal 3D Geek Show. Ele mostra o passo a passo para criar a sua impressão.

Como você pode ver, é importante escolher a imagem certa para usar em seu lithophane, pois isso pode afetar muito o tempo de fatiamento, o tempo de impressão e o resultado geral. Se você é paciente e tem uma impressora bem calibrada, então você pode usar praticamente qualquer imagem que quiser, apesar de que com imagens com muito contraste você obtém resultados muito melhores.

Agora é hora de botar a mão na massa e começar a praticar! Para te ajudar ainda mais, veja também o nosso conteúdo sobre qual a influência da altura de camada nas impressões 3D!

7 formas de aumentar a velocidade da impressão 3D sem perder qualidade!

7 formas de aumentar a velocidade da impressão 3D sem perder qualidade!

Podemos dizer que uma das grandes barreiras para a propagação da tecnologia de impressão 3D é a baixa velocidade do processo. Porém, existem algumas maneiras de conseguirmos driblar esse empecilho sem perder a qualidade da peça produzida, e são essas dicas que vamos dar agora.


Sem tempo para ler? Então ouça este conteúdo clicando no player a seguir:

Infelizmente, para aumentar a velocidade da impressão 3D, você não pode simplesmente alterar a configuração no seu fatiador. Por exemplo, o resultado da impressão de uma peça a 100 mm/s com uma altura de camada de 0,1 mm pode não parecer tão bom quanto à mesma peça impressa a 50 mm/s com uma altura de camada de 0,2 mm. Claro que isso depende de vários fatores. Mas no geral a impressão 3D é uma atividade demorada!

A velocidade de trabalho é quase sempre inversamente proporcional à qualidade. Porém, aumentar a velocidade não precisa necessariamente ser sinônimo de impressão ruim. Tudo depende da impressora, do modelo a ser impresso e de qual é a função de sua peça.

As configurações são sempre dependentes da geometria do modelo. Por isso pode demorar um pouco para você experimentar diferentes configurações até encontrar o “ponto ideal” para cada uma.

Os principais fatores que influenciam o tempo de impressão são:

  • estrutura da impressora 3D;
  • velocidade de impressão;
  • altura da camada;
  • diâmetro do bico;
  • densidade de preenchimento.

Excluindo o primeiro item, os fatores podem ser alterados de acordo com o modelo que será impresso. Para lhe auxiliar nas diferentes configurações que lhe permitem aumentar a velocidade de trabalho criamos uma lista com 7 maneiras de você reduzir o tempo de impressão sem perder a qualidade que necessita em cada peça. Confira!

 

1. Aumentar a velocidade da impressão 3D padrão

A maneira mais comum é aumentar a velocidade da impressão 3D nas configurações do software de fatiamento. Você pode ajustar a impressão para velocidades altas, no entanto, a cabeça de impressão é forçada a se mover mais rapidamente e isso afetará negativamente a precisão de suas peças.

Assim, se você tiver um produto sem detalhamentos, não há problema em aumentar sua velocidade de impressão 3D. No entanto, se o seu produto apresentar muitos detalhes, aconselhamos que você mantenha sua velocidade de impressão normal (geralmente até 60 mm/s).

2. Alterar a densidade de preenchimento e espessura da parede

As configurações de preenchimento afetarão o tempo de impressão e a resistência da peça (a tensão máxima que o modelo pode suportar antes de quebrar). Isso significa que mais preenchimento retorna uma peça mais forte. Porém, com tempos de impressão mais longos e mais recursos consumidos.

Quando preenchida com estrutura de colmeia, a impressão 3D normalmente demora menos tempo antes de ser concluída. No entanto, se você já utiliza este preenchimento, ainda tem algumas opções para aumentar sua velocidade de impressão. Por exemplo: tente reduzir ainda mais a porcentagem de preenchimento, mas lembre-se sempre de verificar se a relação entre a espessura da parede e o preenchimento permanece boa. Isso impedirá que você perca sua peça durante a impressão.

Vale ressaltar que um produto com menor densidade de preenchimento e menor espessura de parede é mais vulnerável. Portanto, recomendamos usar esta técnica apenas com produtos em que a força não é um fator importante. Por exemplo: modelos de exibição.

Decida sempre suas prioridades. Você quer minimizar custos, economizar tempo ou aumentar a qualidade? Se a resposta for economizar tempo, essa técnica pode te ajudar.

 

3. Criar design de peças vazias

Para peças individuais, a velocidade é geralmente uma troca direta com qualidade. Portanto essa técnica está diretamente relacionada com a anterior, uma vez que uma estratégia é projetar suas peças para serem impressas vazias. Imprimir sem preenchimento melhorará a velocidade e a qualidade da superfície, mas suas peças não serão fortes.

Além disso, ao projetar, lembre-se de que as peças impressas em 3D são mais fracas ao longo do eixo Z do que no eixo X e Y.

4. Usar um bico maior e maior altura da camada

A maior altura da camada combinada com diâmetros de bicos maiores reduzem o tempo de impressão. No entanto, reduzem também o tamanho mínimo dos detalhes e arredondam um pouco os cantos da peça. Se a precisão não for um fator fundamental, você pode optar por imprimir com um bico maior e uma altura máxima da camada. A altura máxima da camada é de 75% do diâmetro do bico. Isso significa que com um bico de 0,8 mm você pode construir uma camada de até 0,6 mm.

Se você usar pequenas alturas de camada com bicos maiores, você terá uma melhor chance de manter a qualidade da superfície da sua impressão. Mas, se a sua peça não tiver muitos detalhes, você pode combinar um bico maior com uma altura de camada maior.

Use um bico maior quando os valores mínimos nos eixos X e Y forem maiores que o tamanho do bico. Assim, a maneira mais fácil de você saber se os valores estão adequados é verificar se o menor detalhe do seu modelo aparece na visualização da camada. Se isso acontecer, sua peça poderá ser impressa.

Tenha em mente que a resolução Z deve ser menor do que o tamanho do bico. Assim, você será capaz de fatiar e ver os recursos nas paredes laterais todas as vezes que os detalhes forem menores do que o seu bico.

Se você estiver experimentando um bico de 0,8 mm, o ideal é escolher uma altura de camada entre 0,2 mm e 0,4 mm. Mude a espessura da parede para 0,8 mm e a quantidade de paredes para apenas uma. Se necessita usar o preenchimento na peça, aumente-o. Você precisará de mais preenchimento com 0,8 mm do que com o bico de 0,4 mm, uma vez que um bico maior produz um preenchimento mais espaçado.

Como consequência de diminuir a quantidade de paredes, a peça torna-se mais frágil, o que afeta na firmeza do produto. Além disso, a impressão com camadas mais espessas significa mais perda de detalhes. Porém, se isso não for uma característica importante para seu modelo, vale a pena utilizar essa técnica.

Você também terá que trabalhar para descobrir o equilíbrio certo entre velocidade e temperatura. Se a sua impressão estiver muito caída, aumente sua velocidade. Se a extrusora emitir ruídos, aumente a temperatura de extrusão.

5. Produzir ao mesmo tempo

Você pode imprimir duas peças ao mesmo tempo. No entanto, isso só é possível quando ambos os modelos são pequenos o suficiente para caberem na mesma mesa de impressão. Para executar esta técnica, organize a disposição das peças na mesa de impressão, dentro do fatiador.

Produzir ao mesmo tempo proporciona mais conveniência e economiza tempo. A reinicialização e o aquecimento da impressora não são mais necessários. Porém, tenha em mente que você deverá usar o mesmo filamento para ambos os produtos para evitar problemas de diferentes temperaturas de impressão. Assim, essa opção é uma maneira indireta de aumentar a velocidade da impressão 3D.

6. Utilizar um material para dois propósitos

Impressoras 3D com duplo extrusor são capazes de imprimir multicores e multimateriais. Isso significa que você pode imprimir um modelo de PLA e usar material de suporte solúvel. No entanto, a impressora precisa alternar entre dois materiais e isso pode aumentar o tempo de impressão.

Uma solução para aumentar a velocidade da impressão 3D indiretamente é usar apenas um material para ambos os propósitos. Por exemplo, usar PLA como material principal e também material de suporte.

O material de suporte da peça deverá ser impresso com uma densidade de preenchimento menor, para depois ser mais fácil de remover. Dessa forma, a impressora não precisa alternar entre dois materiais, o que economizará muito tempo de impressão.

7. Configurar para o volume máximo de extrusão

Seu bico pode extrusar um determinado volume de material de cada vez. Este volume é determinado por uma combinação de três configurações:

  • velocidade de impressão;
  • tamanho do bico;
  • altura da camada.

Aumentar qualquer um desses três valores, sendo que os dois últimos devem ser combinados, fará com que a impressora libere mais filamento. Em consequência isso aumentará a velocidade da impressão 3D, porém, também significa que você terá que aumentar a temperatura para garantir que ele seja derretido com rapidez suficiente para ser depositado nessa velocidade. Por padrão, imprime-se PLA com um bico de 0,4 mm até aproximadamente 210° C. Se você mudar o bico para 0,8 mm, a temperatura deve subir um pouco.

Portanto, o essencial quando deseja-se aumentar a velocidade de uma impressão 3D é entender a finalidade do modelo e a capacidade da máquina. Por exemplo, se a peça for apenas um item decorativo vale a pena abrir mão da resistência final diminuindo a densidade de preenchimento e a espessura da parede. Por outro lado, se você for imprimir uma peça em que os detalhes não são fundamentais ou são muito poucos, pode-se aumentar a velocidade de impressão padrão sem prejuízos na qualidade final.

Agora que você já aprendeu como aumentar a velocidade da impressão 3D de diferentes formas, que tal descobrir qual a influência da altura da camada em suas peças 3D?

É possível fazer uma impressão 3D colorida? Descubra agora!

Você já pensou em usar a sua impressora 3D com somente um extrusor para criar peças coloridas, com duas ou mais cores? Isso é totalmente possível e existem técnicas para isso. Neste conteúdo vamos mostrar como fazer impressão 3D colorida.


Sem tempo para ler? Então ouça este conteúdo clicando no player a seguir:

A tecnologia de impressão 3D realmente revolucionou e vem mudando a forma de fabricação de peças e protótipos. Mas, é claro que como qualquer outra ferramenta, existem limitações. Um desses limites está na utilização de cores variadas para uma impressão 3D colorida.

A maioria das impressoras 3D fabricadas e vendidas no mercado apresentam somente um extrusor. No entanto, existem maneiras práticas de burlar esse limite, criando peças impressas coloridas ou até mesmo com mais de um material.

Criamos este artigo mostrando 4 diferentes maneiras de fazer uma impressão 3D colorida e que você pode aplicar agora mesmo. Confira!

 

Duas extrusoras para imprimir com mais de um filamento

Se você quiser imprimir um objeto com mais de uma cor de filamento ou materiais diferentes, isso é um pouco mais complicado do que imprimir uma peça monocromática. Para isso você pode usar duas ou mais extrusoras. Cada uma com cor diferente de filamento, então você poderá imprimir uma peça em vários tons.

A extrusão dupla é quando você imprime com múltiplos filamentos ou materiais. Com uma impressora que possui duas ou mais extrusoras, você pode misturar materiais, fazendo camadas alternadas de cor ou apenas partes em cores diferentes.

Porém, é importante lembrar que o projeto para ser impresso em uma impressora com duas ou mais extrusoras deve ser adaptado para isso. Não basta colocar duas cores de filamentos na impressora e achar que o projeto automaticamente vai ser impresso em duas cores.

Além disso, a extrusão com mais de uma cor implica em alguns cuidados. O tempo de impressão, por exemplo, pode se tornar elevado. Quando um extrusor estiver operando, o outro deve ser resfriado para que o filamento não escorra. Na troca, o bico em baixa temperatura deve ser aquecido e o outro resfriado.

Duas extrusoras para imprimir com mais de um filamento

O ideal, e que tende a se tornar uma realidade, é que se tenha conjuntos independentes, imprimindo a mesma peça.

Impressão 3D colorida e uma única extrusora

Ter uma impressora com apenas uma extrusora não significa que você só poderá imprimir peças monocromáticas ou que terá que comprar uma nova impressora. Basta seguir o passo a passo abaixo que você poderá realizar uma impressão 3D colorida sem dor de cabeça.

Etapa 1: Encontre a altura da camada

Dependendo do seu projeto, diferentes valores da altura da camada podem ser usados. Definir esse número desde o início é importante porque ajudará você a projetar seu modelo 3D para ter pontos de início e parada previsíveis. Como exemplo, suponha que você utilize uma resolução da camada de 0,25 mm, e certifique-se de que todas as nossas medidas no eixo Z são divisíveis por este número, ou seja, 0,50; 1,75; 2,00.

Etapa 2: Faça seu modelo 3D

Etapa 2: Faça seu modelo 3D

Use seu software CAD favorito para criar um modelo 3D, mas lembre-se de manter a altura da sua camada sempre em mente.

Neste exemplo será utilizado fundo listrado em uma moeda. As tiras são de 1,00 mm de altura, a face é de 3,00 mm e o anel externo é de 0,50 mm extra. Como já dito, todos os valores são divisíveis pela altura da camada que é de 0,25 mm.

Com o modelo finalizado, exporte como um STL.

Etapa 3: Importar para o Slice

Etapa 3: Importar para o Slice

Utilizando o Simplify3D para o fatiamento (o processo é semelhante para os outros softwares) importe o arquivo STL gerado anteriormente e defina as configurações de impressão.

Etapa 4: Gerar G-Code

A fase mais importante na impressão com mais de uma cor é a maneira que o fatiador tenta iniciar uma impressão acima da mesa.

Use o bloco de notas para abrir o arquivo de impressão. Pesquise com Ctrl+F por Z = 1. Acima dessa linha digite o seguinte código:

M84 S0

G91

G1 Z5 F6000

G90

G1 X100 Y0

M83

M25

G92 E0

M25

G92 E0

G90

M82

Etapa 4: Gerar G-Code

Salve o arquivo e o transfira para a impressora através do cartão de memória.

Etapa 7: Imprimindo as partes

 

Etapa 7: Imprimindo as partesEtapa 7: Imprimindo as partes

Agora que você já fez a parte mais difícil da configuração é só iniciar a parte mais divertida da impressão. Primeiro, carregue o filamento da sua base e execute o Gcode. Assim que a impressão pausar, lembre-se de não retirar sua peça da mesa. Em seguida, mude seu filamento para a cor da parte superior e execute o Gcode novamente. Fácil né?

Quer utilizar mais do que duas cores? Você pode usar essas etapas para fazer quantas cores desejar. Os únicos passos a mais são adicionar pausas as suas seções intermediárias.

Impressão 3D colorida usando peça de sacrifício

Existe uma maneira para impressão 3D colorida que não necessita de pausa na impressão e nem de configurações extras para a troca de cor. Consiste em uma impressão com peça de sacrifício.

Para essa técnica basta criar além do artigo que quer imprimir um objeto secundário que servirá como peça de sacrifício. Essa peça que será descartada posteriormente não necessita ser do mesmo tamanho da peça principal pode ser apenas uma torre — assim você não desperdiçará tanto filamento.

A única função desse objeto secundário é realmente servir de sacrifício! Pois é no momento da impressão dele que você deverá efetuar a troca do filamento por um de outra cor. Quando a impressão retornar para a peça principal você já terá uma nova cor de filamento sem pausar o processo.

A desvantagem desse método é que é necessário ficar de olho para não perder o timing da troca de cores. Além disso existe o desperdício de filamento, pois a peça de sacrifício é descartada após a impressão.

Impressão 3D multimaterial

Nem sempre a sua peça impressa necessita ser modelada de maneira inteiriça. Você já pensou em criar as partes de acordo com a cor que deseja imprimir cada uma delas? Sim, essa é outra maneira de obter uma impressão 3D colorida!

Basta criar e imprimir o seu modelo por partes. Como exemplo, imprimimos o Mike Wazowski. O modelo possui quatro partes com mudanças de cor, portanto ele foi impresso em quatro etapas.

Primeira parte: corpo do personagem

Primeira parte: corpo do personagem

Parte impressa com PLA Verde Limão da 3D Lab.

 

Segunda parte: parte externa do olho (esclerótica)

Segunda parte: parte externa do olho (esclerótica)

Parte impressa com PLA Branco da 3D Lab.

Terceira parte: parte intermediária do olho (íris)

Terceira parte: parte intermediária do olho (íris)

Parte impressa com PLA Verde Limão da 3D Lab.

Quarta parte: parte central do olho (pupila)

Quarta parte: parte central do olho (pupila)

Parte impressa com PLA Preto da 3D Lab.

Peça final

Após a impressão de todas as partes do modelo basta encaixá-las. Super prático, não é mesmo?

Peça final

 

Esse modelo está disponível no Thingiverse, assim como vários outros. É só procurar por “multi-material”.

Então seja utilizando uma impressora com duas ou mais extrusoras ou uma impressora com apenas uma e fazendo a troca de filamentos de forma manual ou por encaixe posterior das peças, você não tem mais desculpas para não realizar uma impressão 3D colorida por achar complexa demais ou extremamente trabalhosa.

Gostou do nosso conteúdo sobre impressão 3D colorida? Agora, compartilhe este post nas suas redes sociais junto com uma foto da sua peça colorida! Lembre-se de marcar nossas páginas!

 

Cientistas criam córneas em impressora 3D para reduzir as filas de transplante

Talvez um dos maiores problemas para a área médica seja reduzir o tamanho das filas de transplante! Segundo dados da Associação Brasileira de Transplante de Órgãos (ABTO) houve diminuição de 2,4% na taxa de doadores efetivos, em relação a 2017. Tendo passado de 16,6 pmp (taxa por milhão de população) para 16,2 pmp. Por isso o Brasil tem se afastado da meta prevista para o ano que é de 18,0 pmp.

Visando colaborar para o aumento das taxas de transplantes muitos projetos estão em andamento, não só no Brasil mas em todo mundo. Um deles utiliza a impressão 3D como uma alternativa para a falta de doação de córneas humanas.

Neste artigo iremos contar um pouco mais sobre esse projeto. Confira!

O projeto

Buscar métodos para diminuir a quantidade de pessoas esperando em filas de transplante tem sido um desafio para associações médicas em todo o mundo. Por isso, pesquisadores britânicos estão com um projeto para a criação de córneas impressas em 3D. Segundo o site TecMundo “por meio de um método de bioimpressão relativamente simples, cientistas do Instituto de Medicina Genética da Universidade de Newcastle, na Inglaterra, conseguiram criar uma “biotinta” que, usada numa impressora 3D, pode reproduzir com facilidade, em apenas 10 minutos, a forma de uma córnea humana.

A pesquisa se baseia na associação de células-tronco de uma córnea saudável a colágeno e alginato. O resultado dessa mistura é um gel que mantém as células-tronco vivas. Além disso ele também apresenta a textura ideal para passar pelo processo de impressão 3D.

o projeto

Cientistas do Instituto de Medicina Genética da Universidade de Newcastle

Cegueira Córnea x Filas de transplantes

Sendo a terceira maior causa de cegueira no mundo, a cegueira córnea faz pessoas sofrerem anos nas filas de transplante. Atualmente a lista de espera por um transplante de córnea no Brasil conta com quase nove mil pessoas.

Cegueira Córnea x Filas de transplantes

A córnea artificial desenvolvida pelos cientistas britânicos ainda passará por muitos ensaios antes de ser fabricada em grande escala. No entanto, os primeiros testes apontam para um projeto promissor que leva esperança para muitas pessoas em todo o mundo.

Quer saber mais? Confira a notícia completa divulgada pelo site TecMundo e compartilhe essa publicação nas suas redes sociais para mostrar esse grande avanço da tecnologia 3D na área médica!

Aprenda a configurar a primeira camada da impressão 3D!

Identificar uma primeira camada perfeita é bem simples. Isso porque ela possui linhas planas de filamento e não há intervalos entre elas.


Sem tempo para ler? Então ouça este conteúdo clicando no player a seguir:

Saber como configurar a primeira camada em sua impressão 3D é fundamental para o sucesso final da sua peça! Porém, quando ingressamos em uma nova tecnologia, nem sempre temos o conhecimento prévio necessário para ter sucesso logo no início.

Por isso, muitas vezes acabamos aprendendo na tentativa e erro mesmo! Até porque para quem está iniciando nem sempre termos técnicos fazem sentido e a maioria dos tutoriais que vemos na internet estão abarrotados deles sem a devida explicação.

Como nosso objetivo é sempre ajudar, vamos tentar tornar esse processo de aprendizagem e aperfeiçoamento o mais simples possível.

Então, vamos lá!

 

Como configurar a primeira camada

Um dos problemas mais comuns enfrentados por usuários de impressão 3D é a adesão da peça à mesa. Para obter uma boa aderência, as linhas da primeira camada precisam do máximo contato com a mesa possível.

Essa aderência pode ser obtida por meio de uma quantidade considerada de cola passada na mesa ou simplesmente fazendo o certo. Mas afinal o que é o certo?

O filamento é extrusado do bico em forma de tubo porque está sendo empurrado por um orifício redondo. Se o bico estiver muito alto, o filamento será colocado suavemente sobre a mesa e haverá muito pouco contato superficial entre o filamento e a mesa.

Você precisa que o bico esteja mais baixo para que o filamento extrusado seja comprimido contra a mesa e, assim, aumentar a área de contato da superfície. O primeiro passo sempre quando iniciamos uma impressão é verificar se a impressora está adequadamente calibrada e nivelada.

O processo de nivelamento depende de qual máquina está sendo utilizada. Atualmente, muitas impressoras já possuem o nivelamento automático. Mas, para as que não dispõem desse recurso, existem formas manuais para esse ajuste.

Um dos processos mais utilizados é colocar um cartão de visitas entre o bico da impressora e a mesa e medir as diferenças de altura nas quatro quinas. Com o aperto dos parafusos localizados abaixo da mesa é feito o ajuste e nivelamento.

Passo a passo da configuração

1. Certifique-se que sua mesa de impressão esteja limpa;

2. No menu da impressora (via LCD) ou no software de controle, mande todos os eixos (XYZ) para o home (ponto zero de cada eixo);

3. Em seguida, desabilite os motores, no menu, acione a opção desabilitar motores (disable steppers);

4. Desligue a impressora por precaução;

5. Com as mãos, puxe os eixos para cada um dos quatro cantos da mesa, movendo os eixos X e Y apenas;

6. Iremos, então, calibrar cada um destes quatro pontos:

 

7. Conduza o bico até o ponto 1 manualmente. Então, insira um cartão de visita entre o bico da impressora e sua mesa, raspe-o levemente. Deve haver uma leve pressão de esmagamento no cartão (bico e mesa esmagam o mesmo). Caso esteja muito justo ou livre demais, aperte ou solte a mola da mesa respectiva daquele canto. Repita este passo para cada um dos quatro cantos.

 

Com a mesa nivelada, vamos para a primeira camada…

8. Ligue a impressora, configure sua primeira impressão para camada (primary layer height) para 0,3 mm e a porcentagem da altura da primeira camada (first layer height) para 100%;

9. Inicie sua impressão e verifique se o filamento está sendo levemente esmagado contra a base de impressão. Repare se a quantidade de filamento depositado na mesa está abaixo do esperado. Se estiver é porque o bico está muito próximo à mesa, caso contrário (o filamento estiver solto/arredondado), repita o processo deixando o bico um pouco mais próximo à mesa;

 

 

 
 

10. Alguns software fatiadores, como o Cura, permitem manter a primeira camada da impressão sempre a 0,3 mm. Isso facilita as impressões, pois a altura do bico em relação à mesa será sempre a mesma. No software que não for possível, como no Simplify, ao alterar a resolução das camadas de sua impressão (primary layer height) altere também a altura via software do bico em relação à mesa (first layer height). Altere este valor em %, por exemplo: se sua impressão estiver com resolução em Z de 0,1 mm, altere o valor para aproximadamente 60%. Se 0,2 mm, para 80% e 0,3 para 100%. Assim, você precisará realizar este procedimento de nivelamento apenas uma vez.

11. Para impressões em PLA e PETG, tente, se possível, utilizar vidro sobre sua mesa de impressão (sempre limpo com desengordurante, enxaguado e seco com papel toalha) e para ABS utilize nossa cola 3DLab especial.

Agora que você já sabe configurar a primeira camada de sua impressão 3D, vamos a algumas dicas importantes, no próximo tópico.

Dicas extras para melhorar a qualidade da primeira camada

Nivelamento da mesa

 

Ter uma mesa nivelada é fundamental. Se a distância entre a ponta do bico e a mesa se desviar, mesmo que só um pouco, isso pode fazer com que o material extrudado não se conecte corretamente a mesa. Pode parecer óbvio mas a dica é sempre iniciar a configuração pelo nivelamento!

Velocidades mais baixas

Desacelerar a extrusora durante a impressão da primeira camada reduz as forças aplicadas ao material fundido. Reduzindo assim as chances de ele ser esticado demais e não aderir corretamente. 30% ou 50% da velocidade normal é o recomendado.

Taxas de extrusão corretamente calibradas

Se houver excesso de material na primeira camada, o bico poderá arrastá-lo na segunda passagem. Isso faz com que ele se levante da mesa (principalmente se o material tiver resfriado). Ao contrário, muito pouco material pode fazer com que a primeira camada se solte mais tarde na impressão, resultando em objetos desconectados ou deformados. Por estas razões, é importante ter uma taxa de extrusão bem calibrada.

Altura da primeira camada

Uma altura de camada mais espessa proporcionará mais fluxo e, consequentemente, mais calor, fazendo com que a extrusão se conecte mais à mesa. Recomenda-se aumentar a altura da primeira camada para coincidir com o diâmetro do bico. Por exemplo, se o bico é de 0,3mm recomenda-se uma mesma altura de camada.

Largura de extrusão maior

Quanto mais material tocar a mesa, melhor o objeto vai aderir a ela. Isso pode ser alcançado aumentando a largura de extrusão da primeira camada, seja por uma porcentagem ou uma quantidade fixa.

Um valor de aproximadamente 130% do diâmetro do bico para a largura de extrusão é um valor recomendável.

Sem refrigeração

Não faz sentido aumentar a temperatura da primeira camada e ter um ventilador ou outro mecanismo de refrigeração ligado durante a impressão, principalmente em impressoras abertas. Manter o ventilador e o ar condicionado do ambiente desligados é o recomendado.

A sua impressora está perto de uma porta que se abre regularmente? Ou talvez uma janela? Isso pode ser a causa da deformação nessa primeira camada. Tente movê-la para um local diferente ou criar um compartimento ao seu redor para isolá-la de fatores ambientais.

Utilize técnicas de auxílio

O Raft, por exemplo, é uma boa técnica de auxílio para adesão, especialmente em impressão utilizando o ABS. Apesar de ser um material e tempo extras, ele garante a adesão adequada da primeira camada.

Outra técnica que pode lhe ajudar durante a impressão da primeira camada é o Skirt. Ele ajuda a garantir que tudo está ocorrendo bem mesmo antes do início da impressão. Se a preocupação é a adesão, o Skirt é o caminho a percorrer.

O Brim é muito semelhante ao Skirt, porém ele está preso ao modelo, ao invés de estar ao seu redor. Se a intenção é ter maior adesão em um modelo que tenha pernas ou algo semelhante, mas que não possua uma grande área de superfície tocando a mesa, o Brim é uma ótima escolha.

Vale a pena ressaltar que filamentos de qualidade são fundamentais para o sucesso de sua impressão. Não adianta configurar tudo de maneira correta ou comprar uma máquina de última geração se para economizar você utiliza um filamento sem procedência comprovada. Essa também pode ser uma das causas para uma primeira camada não satisfatória!

Portanto, configurar a impressão da primeira camada não precisa ser um bicho de sete cabeças, basta para isso seguir as dicas e praticar!

Depois de aprender a como obter uma primeira camada de impressão 3D perfeita, que tal começar a utilizar as técnicas e nos contar como foi o resultado? Deixe nos comentários como foi sua experiência e caso tenha mais alguma sugestão para acrescentar, ela será muito bem vinda!

Minha conta


Reconhecida como a melhor empresa de impressão 3D do Brasil. Impressoras, filamentos e resina para impressão 3D, cursos, manutenção e prototipagem.

Endereço

Rua Toyota, n°490, Jardim Piemont - Betim - MG 
A 20 min do centro de Belo Horizonte.

Horário de funcionamento

08:00 às 17:00 | Segunda à sexta-feira

Dúvidas gerais | Suporte | Vendas

Nossas redes

Este site é protegido pelo reCAPTCHA, a Política de Privacidade e os Termos de Serviço do Google se aplicam.
3D Lab Industria Ltda.
CNPJ 20.212.019-0001/09
Compre aqui!